Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Foldable and stretchable, silicon circuits conform to many shapes

Photo courtesy John Rogers
Circuit diagram (top frame) and optical images of a stretchable, "wavy" silicon ring oscillator circuit on a rubber substrate, in the "as fabricated" flat state (top micrograph) and in moderate and high states of biaxial compression (middle and bottom micrographs, respectively).
Photo courtesy John Rogers Circuit diagram (top frame) and optical images of a stretchable, "wavy" silicon ring oscillator circuit on a rubber substrate, in the "as fabricated" flat state (top micrograph) and in moderate and high states of biaxial compression (middle and bottom micrographs, respectively).

Abstract:
Scientists have developed a new form of stretchable silicon integrated circuit that can wrap around complex shapes such as spheres, body parts and aircraft wings, and can operate during stretching, compressing, folding and other types of extreme mechanical deformations, without a reduction in electrical performance.

Foldable and stretchable, silicon circuits conform to many shapes

CHAMPAIGN, IL | Posted on March 27th, 2008

"The notion that silicon cannot be used in such applications because it is intrinsically brittle and rigid has been tossed out the window," said John Rogers, a Founder Professor of Materials Science and Engineering at the University of Illinois.

"Through carefully optimized mechanical layouts and structural configurations, we can use silicon in integrated circuits that are fully foldable and stretchable," said Rogers, who is a corresponding author of a paper accepted for publication in the journal Science, and posted on its Science Express Web site.

The new designs and fabrication strategies could produce wearable systems for personal health monitoring and therapeutics, or systems that wrap around mechanical parts such as aircraft wings and fuselages to monitor structural properties.

In December 2005, Rogers and his U. of I. research group reported the development of a one-dimensional, stretchable form of single-crystal silicon with micron-sized, wave-like geometries. That configuration allows reversible stretching in one direction without significantly altering the electrical properties, but only at the level of individual material elements and devices.
Now, Rogers and collaborators at the U. of I., Northwestern University, and the Institute of High Performance Computing in Singapore report an extension of this basic wavy concept to two dimensions, and at a much more sophisticated level to yield fully functional integrated circuit systems.

"We've gone way beyond just isolated material elements and individual devices to complete, fully integrated circuits in a manner that is applicable to systems with nearly arbitrary levels of complexity," said Rogers, who also is a researcher at the Beckman Institute and at the university's Frederick Seitz Materials Research Laboratory.

"The wavy concept now incorporates optimized mechanical designs and diverse sets of materials, all integrated together in systems that involve spatially varying thicknesses and material types," Rogers said. "The overall buckling process yields wavy shapes that vary from place to place on the integrated circuit, in a complex but theoretically predictable fashion."

Achieving high degrees of mechanical flexibility, or foldability, is important to sustaining the wavy shapes, Rogers said. "The more robust the circuits are under bending, the more easily they will adopt the wavy shapes which, in turn, allow overall system stretchability. For this purpose, we use ultrathin circuit sheets designed to locate the most fragile materials in a neutral plane that minimizes their exposure to mechanical strains during bending."

To create their fully stretchable integrated circuits, the researchers begin by applying a sacrificial layer of polymer to a rigid carrier substrate. On top of the sacrificial layer they deposit a very thin plastic coating, which will support the integrated circuit. The circuit components are then crafted using conventional techniques for planar device fabrication, along with printing methods for integrating aligned arrays of nanoribbons of single-crystal silicon as the semiconductor. The combined thickness of the circuit elements and the plastic coating is about 50 times smaller than the diameter of a human hair.
Next, the sacrificial polymer layer is washed away, and the plastic coating and integrated circuit are bonded to a piece of prestrained silicone rubber. Lastly, the strain is relieved, and as the rubber springs back to its initial shape, it applies compressive stresses to the circuit sheet. Those stresses spontaneously lead to a complex pattern of buckling, to create a geometry that then allows the circuit to be folded, or stretched, in different directions to conform to a variety of complex shapes or to accommodate mechanical deformations during use.

The researchers constructed integrated circuits consisting of transistors, oscillators, logic gates and amplifiers. The circuits exhibited extreme levels of bendability and stretchability, with electronic properties comparable to those of similar circuits built on conventional silicon wafers.

The new design and construction strategies represent general and scalable routes to high-performance, foldable and stretchable electronic devices that can incorporate established, inorganic electronic materials whose fragile, brittle mechanical properties would otherwise preclude their use, the researchers report.

"We're opening an engineering design space for electronics and optoelectronics that goes well beyond what planar configurations on semiconductor wafers can offer," Rogers said.

The work was funded by the National Science Foundation and the U.S. Department of Energy.

####

About University of Illinois
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Chip Technology

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Aerospace/Space

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

New records set up with 'Screws of Light' November 20th, 2016

Keep it Clean: Leti and French Partners to Test ‘Smart’ Antibacterial Surfaces in Space: Matiss Experiment Designed to Measure Most Effective Material for Cleaning International Space Station and Is Expected to Provide Earth-bound Applications November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project