Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Could blue jean dye and white house paint solve the energy crisis?

Abstract:
Imagine coating the roof of your house with a paint that absorbs energy from the sun - and lets you use that energy to power your television, computer or toaster.

Could blue jean dye and white house paint solve the energy crisis?

Evanston, IL | Posted on February 21st, 2008

Northwestern chemistry professor Mark Ratner hopes that one day you'll be able to do just that with a can of paint he calls "a battery in a jar."

The technology would use tiny nanostructures to convert sunlight into energy, similarly to the process of photosynthesis in plants.

It's just one application of nanotechnology to the energy problem, Ratner said Wednesday night at the monthly Science Café event in Evanston. His talk covered the science behind innovations that could provide clean and efficient energy alternatives.

The problem of scale

With oil prices topping $100 a barrel this week, and recent studies suggesting ethanol and other plant-based fuels may be worse for the environment than conventional fuels, pressure is growing to find a better solution.

"The real issue is that there are a lot of us. There are six billion of us. And there are going to be more. And that means that no little solutions are really very interesting," Ratner said.

Wind and geothermal power can provide clean energy, but not enough of it. "As wonderful as it would be to have a windmill in everybody's back yard generating energy for their house, that's not going to do it for the Earth," Ratner said. "There isn't enough energy that way."

For a solution to be truly effective, it must be scalable. That is, it must produce enough energy to meet the world's needs - especially considering the rapid growth of countries like India and China.

"They are going to be where we are in a few years," he said. "And if India and China use energy the way we use energy, then it's going to get hard to breathe, and the polar bears are going to have a rough time, and the seas are going to get warmer, and the coral reefs are going to die, and it's going to be a different world."

A new kind of solar panel

So what is the best scalable energy source? The sun, Ratner said.

"Coal, oil, wind, biomass - all that energy is originally solar energy," he said. "The energy came here from the sun. And leaves, which are nanostructures, turned it into the kinds of energy that we use today."

Scientists are now trying to design solar panels using nanostructures that work like leaves, but better. The goal is 30 percent efficiency in converting sunlight into power - much higher than the efficiency of biofuels.

"The corn organism is 3 percent efficient in harvesting the energy of the sun," Ratner said. "You've got to do better than that." Miscanthus grass, another source of biofuel, is less than 5 percent efficient.

While conventional solar panels made from silicon are about 18 percent efficient, "the cost involved in making them is so high," he said, "that they'd have to run for several years just to pay back the energy cost in making them."

Nanostructures, on the other hand, would use inexpensive materials to capture sunlight. That's where the blue jeans and house paint come in.

In artificial photosynthesis, you need a molecule to absorb the sunlight, but not any molecule will do. (See accompanying video for an explanation of how photosynthesis works.)

"The molecules that we probably want to use are related to the blue jean dye that you've got," Ratner said. "It's a planar molecule, it has the right shape and it has the right energy properties."

The dye is called a thalocyanine and is also found in shoe polish.

Once the molecules capture solar energy, that energy must be stored somewhere - otherwise, it will be given off as heat. White house paint contains titanium dioxide, and when mixed with the dye molecules, titanium dioxide holds on to the energy the dye collects.

Turning concept into reality

The next challenge is to develop the right kind of wire to get the energy back out of the paint and dye mixture.

"Right now, that's a bottleneck," Ratner said. "Nobody's found the right wire to be compatible with this whole thing."

The titanium dioxide in paint has been shown to be up to 12 percent efficient in capturing energy, but there's still a long way to go.

"When you design a solar energy system, the important point is the word ‘system.' It's not like taking an aspirin, which does one thing and, you know, it's great," he said. "This has to capture the energy, separate the charges, hold the charges, recombine the charges and do it all efficiently. And do it in a way that's sustainable and do it in a way that won't break anything. So you have to be able to use it at least 500 million times in order for it to be practical."

So will the solar panel paint ever be developed?

"I actually have a little bit of money from the U.S. government to do exactly that," Ratner said. "They're interested in, for example, [paint-powered] remote sensors. They would like to power a sensor that's out in the middle of the desert somewhere trying to count neutrons. Or they would like to [use it to] power a sensor that's on the highway seeing how fast you're driving."

####

For more information, please click here

Contacts:
Chicago Newsroom
105 W. Adams St., Suite 200 Chicago, IL 60603

News Desk(312) 503-4100
(312) 503-4200
(312) 503-4040 (Fax)

Mindy Trossman
Director of Medill News Service
(312) 503-0778

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

Videos/Movies

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Home

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Materials - Next-generation insulation ... January 13th, 2015

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Industrial

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

Industrial Production of Nano-Based PVC Products in Iran March 20th, 2015

Solar/Photovoltaic

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE