Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New funding to charge energy research at UCL and the London Centre for Nanotechnology

Caption: A sample of a hydrogen storage material to be further prototyped in the new Wolfson-funded laboratories. The material is carbon-based and is already close to meeting some of the DoE targets for hydrogen storage.

Credit: UCL/LCN
Caption: A sample of a hydrogen storage material to be further prototyped in the new Wolfson-funded laboratories. The material is carbon-based and is already close to meeting some of the DoE targets for hydrogen storage.
Credit: UCL/LCN

Abstract:
Professors Neal Skipper and Franco Cacialli, of the London Centre for Nanotechnology (LCN) and the Department of Physics & Astronomy, University College London (UCL), have been awarded a £200,000 laboratory refurbishment grant to help them develop alternative fuel supplies for transport and electricity generation. The Royal Society awarded the grant, with funding from the Wolfson Foundation under a scheme aiming to improve the UK's research infrastructure.

New funding to charge energy research at UCL and the London Centre for Nanotechnology

London, UK | Posted on February 6th, 2008

The refurbishment programme will create a new facility to enable the team to address two important issues in carbon emission reduction: the creation of cheap, efficient storage for hydrogen, and the development of large-surface organic solar cells.

Professor Richard Catlow, Dean of the Faculty of Mathematics and Physical Sciences at UCL commented "This grant will greatly contribute to the search for alternative fuels and efficient renewable energy supplies, therefore building on UCL's strong programme of energy research. I am delighted to hear that the Royal Society and Wolfson Foundation are generously funding the laboratory refurbishment that will make this work possible."

One of the more challenging problems in energy research is to find a compact, safe and lightweight alternative to petroleum that has similar energy densities. There are a large number of different potential solutions to this problem, but the use of hydrogen has interesting possibilities in that it promises a clean, efficient form of energy storage.

However, for the hydrogen economy to be practical there are a several technological challenges to be overcome, many of which are associated with the materials used to store the hydrogen itself. The required performance targets for the storage material have been compiled by the US Department of Energy (DoE). These targets include the amount of hydrogen that can be stored, how easily the material can be filled and emptied, its cost, lifetime and safety. At the moment there are various different technologies under investigation, but at the moment no material meets even the 2005 goals. The refurbished laboratory will allow the researchers to investigate some very promising nanostructured carbon-based materials which are non-toxic, recyclable and should meet the DoE's targets.

The other key energy challenge to be tackled in the new laboratory is the efficient generation of electricity from solar energy. Professor Cacialli is developing solar cells on organic substrates that can be made over large surfaces. Unlike the glass-like traditional solar cells made from silicon, organic photovoltaics can be flexible, resembling plastic materials. Being flexible, they can easily be applied on uneven surfaces, e.g. it may be possible to wrap a building with energy-producing solar cells, effectively turning walls into generators. The new facilities will allow researchers to improve the nanoscale electronic components of solar cells leading to an increase in their efficiency and output.

Professors Skipper and Cacialli remarked "We were delighted to hear about the award, since this will enable us to carry out the laboratory refurbishments needed to intensify our efforts in the burgeoning areas of excitonic solar cells and hydrogen storage".

The refurbished laboratory will be located at the UCL Department of Physics and Astronomy, in central London. The project will complement both UCL's and the LCN's growing portfolio of energy research projects which total more than £10 million of investment.

####

About University College London
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. In the government's most recent Research Assessment Exercise, 59 UCL departments achieved top ratings of 5* and 5, indicating research quality of international excellence.

UCL is in the top ten world universities in the 2007 THES-QS World University Rankings, and the fourth-ranked UK university in the 2007 league table of the top 500 world universities produced by the Shanghai Jiao Tong University. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay.
Website: www.ucl.ac.uk

About the London Centre for Nanotechnology

The London Centre for Nanotechnology is an interdisciplinary joint enterprise between University College London and Imperial College London. In bringing together world-class infrastructure and leading nanotechnology research activities, the Centre aims to attain the critical mass to compete with the best facilities abroad. Research programmes are aligned to three key areas, namely Planet Care, Healthcare and Information Technology and bridge together biomedical, physical and engineering sciences.
Website: www.london-nano.com

For information on the Royal Society Wolfson Laboratory Refurbishment Grant scheme please visit royalsociety.org/funding.asp?id=1132

For more information, please click here

Contacts:
Dave Weston

44-020-767-97678

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Openings/New facilities/Groundbreaking/Expansion

Albertan Science Lab Opens in India May 7th, 2016

SUNY Poly Partnership with Japan's New Energy and Industrial Development Organization Drives Investment in and Installation of Emerging ‘Green’ Technologies at World-Class 'Zero Energy Nano' Building March 22nd, 2016

Composite Pipe Long Term Testing Facility February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Solar/Photovoltaic

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic