Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Northrop Grumman and University of Illinois Researchers Make History With All-Carbon Nanotube Radio

Abstract:
Northrop Grumman Corporation (NYSE:NOC) and the University of Illinois at Urbana-Champaign have created the first fully-functional, all-carbon nanotube transistor radio, demonstrating that carbon nanotubes can be used as high-speed transistors, while consuming only one-thousandth the power required by current transistor technology.

Northrop Grumman and University of Illinois Researchers Make History With All-Carbon Nanotube Radio

Baltimore, MD | Posted on February 1st, 2008

"Leading researchers have long theorized that carbon nanotube transistors possess the kind of material properties that could allow for very low power, high-speed transistors," said Dr. John Przybysz, a senior consulting engineer at Northrop Grumman. "Carbon nanotube technology changes the way we look at power requirements for military sensor systems because they perform equally with other microwave transistors but use a lot less power than current semiconductor devices."

"Since carbon nanotube transistors use less power, the implications for battery operated radio frequency electronics is dramatic. Instead of a battery lasting two days, the same battery providing power to sensor systems built with carbon nanotube transistors may last up to two weeks," said Przybysz.

"By using thousands of perfectly aligned, single-walled carbon nanotubes as a type of semiconductor thin film, our researchers have become the first to successfully bring together all of the pieces required for building real radio frequency analog electronics, including amplifiers, mixers, and resonant antennae," said Dr. Hong Zhang, lead for carbon nanotube development at Northrop Grumman.

Northrop Grumman and the University of Illinois researchers have published their findings with the Proceedings of the National Academy of Sciences. The document is available on the Web at www.pnas.org.

"Carbon nanotube devices made up all the active, vital components of the prototype radio system we built," added Zhang. "The user listens to regular radio broadcasts that flow directly from a carbon nanotube transistor to a pair of headphones or speakers."

"Typical nanotube devices are structured such that they use a single tube to carry current, but the array format provides thousands of conduction channels in each device. Carbon nanotube arrays have high current capacities and enable high power gain at low impedances. That's a significant advantage," said Dr. John Rogers, founder professor of the Materials Science and Engineering department at the University of Illinois at Urbana-Champaign. Roger's team created these large arrays of carbon nanotubes.

Funding was provided by the National Science Foundation and the Department of Energy.

####

About Northrop Grumman Corporation
Northrop Grumman Corporation is a $32 billion global defense and technology company whose 120,000 employees provide innovative systems, products, and solutions in information and services, electronics, aerospace and shipbuilding to government and commercial customers worldwide

Contacts:
Paul Cabellon
Northrop Grumman Electronic Systems
(410) 765-7192

Copyright © PrimeNewswire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanoelectronics

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project