Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Research Project on Graphene Nanoelectronic Devices kicks off in 2008

Abstract:
Will graphene really take the semiconductor industry towards the "Beyond CMOS" era? Some answers to this key question are sought through experiment and simulation in a European research project on Graphene-based Nanoelectronic Devices called "GRAND". The project starts January 1st, 2008 and is coordinated by Nanotechnology specialist AMO GmbH in Aachen, Germany. The partners of the consortium are AMO, the Italian Nanoelectronics network IUNET, CEA-LETI from France, Tyndall National Institute (Ireland), Cambridge University (UK) and ST Microelectronics (France).

Research Project on Graphene Nanoelectronic Devices kicks off in 2008

Aachen, Germany | Posted on January 19th, 2008

The silicon semiconductor industry is the cornerstone of today's high-tech economy. Through continuous downsizing of components and cost reductions, it has fuelled other industries for the past decades. Today the semiconductor industry is facing fundamental challenges and severe economic constraints, and it is expected that the historic trend of downscaling silicon devices will come to an end in about 10-15 years. The major challenge is therefore to find alternatives for information processing and storage beyond the limits of existing CMOS technology. Graphene, an atomic monolayer of carbon, is particularly promising due its novel electronic properties. Initial data indicates that graphene is a prime candidate for "Beyond CMOS" switches and interconnects, and is, despite its revolutionary nature, complementary to conventional CMOS. Its remarkable properties include potential for ballistic conductance at room temperature, current densities exceeding those of current nanoscale interconnects and carrier mobilities rivalling those of III-V devices at room temperature.

The GRAND project partners will investigate graphene towards its applicability for nanoscale "Beyond CMOS" switches and local interconnects. The partners share an extensive scientific and industrial background in nanoelectronic devices and a strong history of collaboration at the European level. The consortium includes experimental, analytic and theoretical groups, each with internationally acknowledged excellence in their field. Coordinator AMO (DE) will use its flexible nano-CMOS process platform to fabricate and characterize nanoscale graphene switches and interconnects. Partner IUNET (IT) will contribute to the project by devoting its renowned expertise in device modelling and simulation. CEA-LETI (FR) will focus its research on large scale graphene fabrication. The Nanotechnology Group at Tyndall National Institute (IE) provides a unique infrastructure for directed assembly of graphene crystallites and the functionalization of edge states. The University of Cambridge Semiconductor Physics group (UK) is ideally suited to detailed analysis and low temperature characterisation of graphene devices. Industry partner ST Microelectronics (FR) will ensure a tight focus on the future applicability and industrial relevance of the research.

Graphene provides the decisive potential of increasing computing performance, functionality and communication speed far beyond the expected limits of conventional CMOS technology. The GRAND consortium includes internationally renowned experimental and theoretical groups from academia and industry, forming a comprehensive unit with capabilities far beyond those of the individual partners. In summary, this ensures a tight focus on the exploitation of the project results for the European societies.

####

About The GRAND project
The GRAND project, complementary to the national BMBF (Bundesministerium für Bildung und Forschung) NanoFutur project "ALEGRA" (www.alegra.info), is supported by the European Commission (EC) within the Seventh Framework Programme, Future and Emerging Technologies, Proactive Intiative: Nano-Scale ICT Devices and Systems under contract number 215752.

For more information, please click here

Contacts:
COORDINATOR

AMO GmbH
Dr.-Ing. Max Lemme
Gesellschaft für Angewandte Mikro- und Optoelektronik mbH
Otto-Blumenthal-Straße 25
52074 Aachen, Germany
Phone: +49 241 - 88 67 207
Fax: +49 241 - 88 67 560
E-mail: lemme(at)amo.de

Copyright © The GRAND project

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Chip Technology

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE