Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Research Project on Graphene Nanoelectronic Devices kicks off in 2008

Abstract:
Will graphene really take the semiconductor industry towards the "Beyond CMOS" era? Some answers to this key question are sought through experiment and simulation in a European research project on Graphene-based Nanoelectronic Devices called "GRAND". The project starts January 1st, 2008 and is coordinated by Nanotechnology specialist AMO GmbH in Aachen, Germany. The partners of the consortium are AMO, the Italian Nanoelectronics network IUNET, CEA-LETI from France, Tyndall National Institute (Ireland), Cambridge University (UK) and ST Microelectronics (France).

Research Project on Graphene Nanoelectronic Devices kicks off in 2008

Aachen, Germany | Posted on January 19th, 2008

The silicon semiconductor industry is the cornerstone of today's high-tech economy. Through continuous downsizing of components and cost reductions, it has fuelled other industries for the past decades. Today the semiconductor industry is facing fundamental challenges and severe economic constraints, and it is expected that the historic trend of downscaling silicon devices will come to an end in about 10-15 years. The major challenge is therefore to find alternatives for information processing and storage beyond the limits of existing CMOS technology. Graphene, an atomic monolayer of carbon, is particularly promising due its novel electronic properties. Initial data indicates that graphene is a prime candidate for "Beyond CMOS" switches and interconnects, and is, despite its revolutionary nature, complementary to conventional CMOS. Its remarkable properties include potential for ballistic conductance at room temperature, current densities exceeding those of current nanoscale interconnects and carrier mobilities rivalling those of III-V devices at room temperature.

The GRAND project partners will investigate graphene towards its applicability for nanoscale "Beyond CMOS" switches and local interconnects. The partners share an extensive scientific and industrial background in nanoelectronic devices and a strong history of collaboration at the European level. The consortium includes experimental, analytic and theoretical groups, each with internationally acknowledged excellence in their field. Coordinator AMO (DE) will use its flexible nano-CMOS process platform to fabricate and characterize nanoscale graphene switches and interconnects. Partner IUNET (IT) will contribute to the project by devoting its renowned expertise in device modelling and simulation. CEA-LETI (FR) will focus its research on large scale graphene fabrication. The Nanotechnology Group at Tyndall National Institute (IE) provides a unique infrastructure for directed assembly of graphene crystallites and the functionalization of edge states. The University of Cambridge Semiconductor Physics group (UK) is ideally suited to detailed analysis and low temperature characterisation of graphene devices. Industry partner ST Microelectronics (FR) will ensure a tight focus on the future applicability and industrial relevance of the research.

Graphene provides the decisive potential of increasing computing performance, functionality and communication speed far beyond the expected limits of conventional CMOS technology. The GRAND consortium includes internationally renowned experimental and theoretical groups from academia and industry, forming a comprehensive unit with capabilities far beyond those of the individual partners. In summary, this ensures a tight focus on the exploitation of the project results for the European societies.

####

About The GRAND project
The GRAND project, complementary to the national BMBF (Bundesministerium für Bildung und Forschung) NanoFutur project "ALEGRA" (www.alegra.info), is supported by the European Commission (EC) within the Seventh Framework Programme, Future and Emerging Technologies, Proactive Intiative: Nano-Scale ICT Devices and Systems under contract number 215752.

For more information, please click here

Contacts:
COORDINATOR

AMO GmbH
Dr.-Ing. Max Lemme
Gesellschaft für Angewandte Mikro- und Optoelektronik mbH
Otto-Blumenthal-Straße 25
52074 Aachen, Germany
Phone: +49 241 - 88 67 207
Fax: +49 241 - 88 67 560
E-mail: lemme(at)amo.de

Copyright © The GRAND project

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Nanoelectronics

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project