Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanovideo captures motion of RNA molecules in 3-D

Abstract:
You may not find it on YouTube, but Hashim Al-Hashimi's video could create quite a stir in scientific circles.

Nanovideo captures motion of RNA molecules in 3-D

ANN ARBOR, MI | Posted on December 20th, 2007

Using an innovative variation on conventional solution state NMR spectroscopy, the University of Michigan researcher and his coworkers have produced a "nanovideo" that reveals in three dimensions how RNA molecules change shape—information that may prove useful in developing drugs against viruses such as HIV.

Similar animations have been produced from theoretical calculations, but Al-Hashimi's is based on actual experimental data and covers a much longer timescale than the simulations. The research is reported in the Dec. 20 issue of the journal Nature.

RNA is one of nature's busiest molecules. Once believed to merely store and relay genetic information, it now is known to perform a variety of other functions, from regulating gene expression and other vital cellular processes to serving as a sensor that detects cellular signals and carries out appropriate reactions in response. The versatile molecule also is essential to viruses such as HIV, which have no DNA and instead rely on RNA to both carry and execute genetic instructions for everything the virus needs to invade and overpower its host.

Typically, RNA works by binding to something else and then radically changing shape. The shape changes, in turn, trigger other processes or cascades of events. Scientists know about the shifting shapes because they've seen before-and-after snapshots of RNA, first in its unbound state, then when it's bound to something. The static images clearly show that the molecule assumes different conformations, but they don't reveal how it changes from one shape to another.

Al-Hashimi's new nanovideo offers a 3-D glimpse at how parts of the molecule—which has ladder-like arms connected by a flexible hub or linker—twist, bend and rotate relative to one another.

Obtaining such information through conventional NMR is impossible, Al-Hashimi said, because the technique measures motion relative to the magnetic field in which the sample is placed. That frame of reference can capture motion only from one point of view, resulting in a one-dimensional measurement. To get a three-dimensional view that reveals how parts of the molecule move relative to one another, Al-Hashimi's group came up with a strategy that would allow them to park the magnetic field first on the molecule's upper arm and then on its lower arm.

"Moving the frame of reference onto the molecule and measuring the same motion from different points of view is like taking pictures from different angles," said Al-Hashimi, an assistant professor of chemistry and an assistant research scientist in the U-M Biophysics Research Division. "We sit on one arm and watch the other moving; then we sit on the other arm and watch the first arm moving. By combining the measurements, we come up with a 3-D view."

The data revealed that the two arms simultaneously twist and bend and that their motion is not random but highly coordinated, exposing a new level of organization in how molecules change shapes. The nanovideo Al-Hashimi's group produced from the data also provides a longer look at molecular motions than do animations based on theoretical calculations. While those animations show motion that occurs over only one nanosecond (one billionth of a second), the Al-Hashimi movie spans about one millisecond (one thousandth of a second).

Understanding the details of RNA motion can be helpful in designing drugs that interact with viral RNA. If researchers know which parts are likely to change to accommodate a drug and which parts are likely to remain rigid, they can more precisely target drugs to interact with the molecule. In the research reported in Nature, Al-Hashimi's team studied a particular RNA molecule from HIV known as TAR, which is critical for viral replication and thus is a key target for anti-HIV drugs.

The technique used in this work also should be applicable other types of biologically and medically important molecules, such as proteins, Al-Hashimi said.

Al-Hashimi's coauthors on the Nature paper are graduate students Qi Zhang and Andrew Stelzer and undergraduate student Charles Fisher. The researchers received funding from the National Institutes of Health.

####

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-1838

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Watch video

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE