Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Irradiated carbon makes for better electronics, say scientists

December 17th, 2007

Irradiated carbon makes for better electronics, say scientists

Abstract:
Scientists at the Weizmann Institute of Science, together with colleagues from the U.S., have implemented doping using UV light and electron beams in the field of molecular electronics. The research was done with particular application to electronic devices made of single layers of organic (carbon-based) molecules.

Such components might be inexpensive, biodegradable, versatile and easy to manipulate. The main problem with molecular electronics, however, is that the organic materials must first be made sufficiently pure and then, ways must be found to successfully dope these somewhat delicate systems. Professor David Cahen and postdoctoral fellow Oliver Seitz of the Weizmann Institute's Material and Interfaces Department, together with Ayelet Vilan and Hagai Cohen from the Chemical Research Support Unit and Professor Antoine Kahn from Princeton University succeeded in purifying the molecular layer to such an extent that the remaining impurities did not affect the system's electrical behavior. The scientists doped the 'clean' monolayers by irradiating the surface with ultraviolet light or weak electron beams, changing chemical bonds between the carbon atoms that make up the molecular layer. These bonds ultimately influenced electronic transport through the molecules. This achievement was described in the Journal of the American Chemical Society (JACS) recently. The researchers predict that this method may enable scientists and electronics engineers to substantially broaden the use of these organic monolayers in the field of nanoelectronics.

Source:
eetimes.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Nanoelectronics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Discoveries

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Announcements

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic