Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Making smart materials using electroactive polymers and carbon nanotubes

December 6th, 2007

Making smart materials using electroactive polymers and carbon nanotubes

Novel communication platforms such as e-papers and e-textiles offer instant information and data handling access. These electronic platforms are based on smart materials that can recognize, process, and respond to external stimuli. They are also easy to manipulate and can be applied on surfaces of various types and shapes. Electroactive or intrinsically conducting polymers1 such as polyaniline, polythiophene, or polypyrrole that combine the electrical conductivity of a metal with the mechanical flexibility and processing properties of a polymer, hold great promise as smart materials for flexible plastic and wearable electronics.2 Unfortunately, degradation issues resulting from their low environmental, thermal, and electronic stability, as well as processing problems, affect their reliability and long-term operational functionality.

To address these issues and improve their overall properties, novel nanoscale concepts aimed at adding functionality at the molecular level have generated significant interest. In this context, combining electroactive polymers with carbon nanotubes (CNTs) represents an attractive solution. These materials consist of tiny graphene cylinders of nanometer diameter and micrometer length with unique structural, mechanical, thermal, electronic and optical properties.3 However, simple mixing procedures usually fail to yield homogeneous and stable CNT dispersions, thus hindering effective interactions as well as further material processing.


Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Self-healable battery Lithium ion battery for electronic textiles grows back together after breaking October 20th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016


Move over, solar: The next big renewable energy source could be at our feet October 20th, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

Study explains strength gap between graphene, carbon fiber: Rice University researchers simulate defects in popular fiber, suggest ways to improve it October 19th, 2016

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016


Nanosciences: Genes on the rack October 21st, 2016

Physicists use lasers to capture first snapshots of rapid chemical bonds breaking October 21st, 2016

Nanoparticle vaccinates mice against dengue fever October 21st, 2016

New perovskite solar cell design could outperform existing commercial technologies: Stanford, Oxford team creates high-efficiency tandem cells October 21st, 2016


Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project