Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Piezo Force Microscopy Module Enables Electromechanical Measurements at the Nanos

Rendered topography of a LiNbO3 sample with the PFM signal painted on top. Image was taken after switching spectroscopy mapping. Inset shows the hysteresis loops measured at an individual point, 4μm scan.
Rendered topography of a LiNbO3 sample with the PFM signal painted on top. Image was taken after switching spectroscopy mapping. Inset shows the hysteresis loops measured at an individual point, 4μm scan.

Abstract:
Electromechanical coupling is one of the fundamental natural mechanisms underlying the functionality of many inorganic and macromolecular materials and is ubiquitous in biological systems. The emergence of ferroelectric and multiferroic non-volatile memories and data storage devices have stimulated the studies of electromechanically active materials at the nanoscale. In the last decade, piezoresponse force microscopy (PFM) has emerged as the preeminent tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric materials. In response to the growing applications of electromechanical imaging and spectroscopy, Asylum Research has developed the new Piezo Force Module, which enables very high sensitivity, high bias, and crosstalk-free measurements of piezoelectrics, ferroelectrics, multiferroics, and biological systems. It is exclusively available for the MFP-3D™ Atomic Force Microscope.

New Piezo Force Microscopy Module Enables Electromechanical Measurements at the Nanos

(Santa Barbara, CA | Posted on November 27th, 2007

"Electromechanics and PFM is a growing area of research with studies ranging from data storage devices to MEMS to electromotor proteins and electrophysiology. Our Piezo Force Module uses a special high voltage accessory and advanced imaging modes to measure piezoresponse, even for the weakest piezoelectric materials," said Dr. Roger Proksch, President and co-founder of Asylum Research. "We are extremely excited about the potential for advanced measurements in many different disciplines."

The Piezo Force Module is an MFP-3D accessory that enables high voltage PFM measurements and advanced imaging modes for characterizing the sample material. With the Piezo Force Module, a bias is applied to the AFM tip using proprietary electronics, a high voltage cantilever, and sample holder. The vertical and lateral response amplitude measures the local electromechanical activity of the surface, and the phase of the response yields information on the polarization direction. High probing voltages, up to +220 volts, can characterize even very weak piezo materials. Exclusive patent-pending imaging modes, dual frequency resonance tracking and band excitation, effectively use
resonance enhancement in PFM and provide new information on local response and energy dissipation which cannot be obtained by standard AFM scanning modes. These techniques allow independent measurement of amplitude, resonant frequency, and Q-factor of the cantilever and overcome limitations of traditional sinusoidal cantilever excitation. The large frequency range (1kHz - 2MHz) of MFP-3D allows imaging both at the static condition, and effective use of several cantilever resonances and use of the inertial stiffening of the cantilever. Polarization dynamics can also be studied with the built-in spectroscopy modes that include single-point hysteresis loop measurements and switching spectroscopy mapping. These modes provide local measure of such parameters as coercive
and nucleation biases, imprint, remanent response, and work of switching (area within the hysteresis loop), for correlation with local microstructure. Combined with the high-voltage module, these allow local polarization switchingto be probed even in high-coercivity materials such as electro-optical single crystals. Pioneering research on PFM is currently being conducted at Oak Ridge National Laboratory at the Materials Science and Technology Division and Center for Nanophase Materials Sciences, in collaboration with Asylum Research (see Asylum Research press release dated March 28, 2007). Many of their latest results will be presented at the MRS Fall2007 Meeting in Boston, MA.

"The recent work that we have done in collaboration with Asylum is already producing ground-breaking results," said Dr. Kalinin, Staff Scientist at ORNL. "The plethora of new and exciting electromechanical phenomena emerging on the nanoscale - from electric field induced phase transitions in ferroelectrics to electronic flexoelectricity and molecular electromotors - has been belied by the lack of capability to study them quantitatively and reproducibly. PFM is the technique that enables these studies. Eventually, the development of nanotechnology will require the capability not only to "think", but to "act" on the nanoscale. PFM will pave the way for the understanding of electromechanical coupling mechanisms on the nanometer scale and development of the molecular electromechanical systems." The Piezo Force Module will be introduced at the MRS Fall 2007 meeting.

MFP-3D is a trademark of Asylum Research.

####

About Asylum Research
Asylum Research, a privately held company, is a premier manufacturer of advanced scientific instrumentation, including AFMs/SPMs (Scanning Probe Microscopes), for nanoscale science and technology. An AFM is one of the most important instruments used for measuring surfaces and surface properties at the nanometer level.

For more information, please click here

Contacts:
Terry Mehr
Director of Marketing
Asylum Research
6310 Hollister Ave.
Santa Barbara, CA 93117
805-696-6466

Copyright © Asylum Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project