Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Nanotechnology circuit boards

November 14th, 2007

Nanotechnology circuit boards

Abstract:
For the past several years, carbon nanotubes have been heralded as the most promising nanotechnology in the race to make faster, more powerful computers and portable electronic devices. In principle, carbon nanotubes can play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors don't work. Nanotubes have high tensile strength, ductility, resistance to heat, and relative chemical inactivity. The composition and geometry of carbon nanotubes produce a unique electronic complexity, partially due to their size, because quantum physics governs at the nanometer scale. But graphite itself is a very unusual material. While most electrical conductors can be classified as either metals or semiconductors, graphite is one of the rare materials known as a semi-metal, delicately balanced somewhere between the two. By combining graphite's semi-metallic properties with the quantum rules of energy levels and electron waves, carbon nanotubes emerge as highly unusual conductors. Among different species of nanotubes, single-walled carbon nanotubes (SWCNTs) are the most likely candidate for revolutionizing modern electronics industry. Although the electronics industry has already made significant progress in the dimensions of transistors in commercial chips, engineers still face great obstacles in continuing electronic miniaturization due to fundamental physical limits. While there are great economic incentives to shrink these personal devices further, the cost and engineering complexity of integrating carbon nanotubes into everyday electronics has been prohibitive. This challenge has stimulated a great deal of research into how to use carbon nanotubes in electronic devices, efficiently and inexpensively. One of the hottest areas of research involves the creation of large networks where carbon nanotubes can be aligned in preset patterns, allowing scientists to select a specific location and chirality for each carbon nanotube, and the ability to then integrate this network into an integrated circuit-compatible environment.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE