Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > News > Nanotechnology circuit boards

November 14th, 2007

Nanotechnology circuit boards

Abstract:
For the past several years, carbon nanotubes have been heralded as the most promising nanotechnology in the race to make faster, more powerful computers and portable electronic devices. In principle, carbon nanotubes can play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors don't work. Nanotubes have high tensile strength, ductility, resistance to heat, and relative chemical inactivity. The composition and geometry of carbon nanotubes produce a unique electronic complexity, partially due to their size, because quantum physics governs at the nanometer scale. But graphite itself is a very unusual material. While most electrical conductors can be classified as either metals or semiconductors, graphite is one of the rare materials known as a semi-metal, delicately balanced somewhere between the two. By combining graphite's semi-metallic properties with the quantum rules of energy levels and electron waves, carbon nanotubes emerge as highly unusual conductors. Among different species of nanotubes, single-walled carbon nanotubes (SWCNTs) are the most likely candidate for revolutionizing modern electronics industry. Although the electronics industry has already made significant progress in the dimensions of transistors in commercial chips, engineers still face great obstacles in continuing electronic miniaturization due to fundamental physical limits. While there are great economic incentives to shrink these personal devices further, the cost and engineering complexity of integrating carbon nanotubes into everyday electronics has been prohibitive. This challenge has stimulated a great deal of research into how to use carbon nanotubes in electronic devices, efficiently and inexpensively. One of the hottest areas of research involves the creation of large networks where carbon nanotubes can be aligned in preset patterns, allowing scientists to select a specific location and chirality for each carbon nanotube, and the ability to then integrate this network into an integrated circuit-compatible environment.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Enhanced electron doping on iron superconductors discovered: IBS Centre for Correlated Electron Systems revises existing theories by raising the temperature for superconductivity August 17th, 2016

See-through circuitry: New method makes AZO a viable and cheap alternative for transparent electronics August 15th, 2016

Nanotubes/Buckyballs/Fullerenes

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Nanoelectronics

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic