Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > 'Nailing' superlyophobic surfaces with nanotechnology

October 22nd, 2007

'Nailing' superlyophobic surfaces with nanotechnology

Abstract:
When raindrops splash against your window you probably get frustrated because the weather has turned bad again. Physicists and material engineers, on the other hand, are quite fascinated by the process of 'wetting.' What happens when a fluid is brought in contact with a solid surface is much more complex than you might guess from just looking at your wet window. In physical terms, the process of wetting is driven by the minimum free energy principle - the liquid tends to wet the solid because this decreases the free energy of the system (in this case the system consists of a liquid plus solid). For low-surface-tension liquids the minimum free energy is achieved only when the liquid completely wets the solid. Understanding these mechanics, and using nanotechnology to structure surfaces to control wetting, has a far-reaching impact for many objects and products in our daily lives - by preventing wear on engine parts or fabricating more comfortable contact lenses, better prosthetics, and self-cleaning materials. The primary measurement to determine wettability is the angle between the solid surface and the surface of a liquid droplet on the solid's surface. For example, a droplet of water on a hydrophobic surface would have a high contact angle, but a liquid spread out on a hydrophilic surface would have a small one. Surfaces where the contact angle is approaching 180° are called superhydrophobic and surfaces where the contact angle is approaching 0° are called superhydrophilic. Advanced material engineering techniques can structure surfaces that allow dynamic tuning of their wettability all the way from superhydrophobic behavior to almost complete wetting - but these surfaces only work with high-surface-tension liquids. Unfortunately, almost all organic liquids that are ubiquitous in human environment such as oils, solvents, detergents, etc. have fairly low surface tensions and thus readily wet even superhydrophobic surfaces. Researchers are now about to create surfaces that would extend superhydrophobic behavior to all liquids, no matter what the surface tension.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Materials/Metamaterials

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Combined effort for structural determination April 15th, 2015

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE