Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers set new record for brightness of quantum dots

Abstract:
By placing quantum dots on a specially designed photonic crystal, researchers at the University of Illinois have demonstrated enhanced fluorescence intensity by a factor of up to 108. Potential applications include high-brightness light-emitting diodes, optical switches and personalized, high-sensitivity biosensors.

Researchers set new record for brightness of quantum dots

Urbana-Champaign, IL | Posted on September 25th, 2007

"We are using photonic crystals in a new way," said Brian Cunningham, a professor of electrical and computer engineering and corresponding author of a paper published in the August issue of the journal Nature Nanotechnology. "We tune them to the specific wavelength of a laser used to stimulate the quantum dots, which couples the energy more efficiently and increases the brightness."

A quantum dot is a tiny piece of semiconductor material 2 to 10 nanometers in diameter (a nanometer is 1 billionth of a meter). When illuminated with invisible ultraviolet light, a quantum dot will fluoresce with visible light.

To enhance the fluorescence, Cunningham and colleagues at the U. of I. begin by creating plastic sheets of photonic crystal using a technique called replica molding. Then they fasten commercially available quantum dots to the surface of the plastic.

"We designed the photonic crystal to efficiently capture the light from an ultraviolet laser and to concentrate its intensity right within the surface where the quantum dots are located," said Cunningham, who also is affiliated with the university's Beckman Institute, the Micro and Nanotechnology Laboratory, and the Institute for Genomic Biology. "Enhanced absorption by the quantum dots is the first improvement we made."

Enhanced, directed emission from the quantum dots is the second improvement.

Quantum dots normally give off light in all directions. However, because the researchers' quantum dots are sitting on a photonic crystal, the energy can be channeled in a preferred direction - toward a detector, for example.

While the researchers report an enhancement of fluorescence intensity by a factor of up to 108 compared with quantum dots on an unpatterned surface, more recent (unpublished) work has exceeded a factor of 550.

"The enhanced brightness makes it feasible to use photonic crystals and quantum dots in biosensing applications from detecting DNA and other biomolecules, to detecting cancer cells, spores and viruses," Cunningham said. "More exotic applications, such as personalized medicine based on an individual's genetic profile, may also be possible."

Funding was provided by the National Science Foundation and SRU Biosystems. Part of the work was carried out in the university's Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
James E. Kloeppel, Physical Sciences Editor

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Discoveries

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Quantum Dots/Rods

A new type of quantum bits July 29th, 2016

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Building a better bowtie: Bowtie-shaped nanostructures may advance the development of quantum devices WEIZMANN July 5th, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Photonics/Optics/Lasers

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic