Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers set new record for brightness of quantum dots

Abstract:
By placing quantum dots on a specially designed photonic crystal, researchers at the University of Illinois have demonstrated enhanced fluorescence intensity by a factor of up to 108. Potential applications include high-brightness light-emitting diodes, optical switches and personalized, high-sensitivity biosensors.

Researchers set new record for brightness of quantum dots

Urbana-Champaign, IL | Posted on September 25th, 2007

"We are using photonic crystals in a new way," said Brian Cunningham, a professor of electrical and computer engineering and corresponding author of a paper published in the August issue of the journal Nature Nanotechnology. "We tune them to the specific wavelength of a laser used to stimulate the quantum dots, which couples the energy more efficiently and increases the brightness."

A quantum dot is a tiny piece of semiconductor material 2 to 10 nanometers in diameter (a nanometer is 1 billionth of a meter). When illuminated with invisible ultraviolet light, a quantum dot will fluoresce with visible light.

To enhance the fluorescence, Cunningham and colleagues at the U. of I. begin by creating plastic sheets of photonic crystal using a technique called replica molding. Then they fasten commercially available quantum dots to the surface of the plastic.

"We designed the photonic crystal to efficiently capture the light from an ultraviolet laser and to concentrate its intensity right within the surface where the quantum dots are located," said Cunningham, who also is affiliated with the university's Beckman Institute, the Micro and Nanotechnology Laboratory, and the Institute for Genomic Biology. "Enhanced absorption by the quantum dots is the first improvement we made."

Enhanced, directed emission from the quantum dots is the second improvement.

Quantum dots normally give off light in all directions. However, because the researchers' quantum dots are sitting on a photonic crystal, the energy can be channeled in a preferred direction - toward a detector, for example.

While the researchers report an enhancement of fluorescence intensity by a factor of up to 108 compared with quantum dots on an unpatterned surface, more recent (unpublished) work has exceeded a factor of 550.

"The enhanced brightness makes it feasible to use photonic crystals and quantum dots in biosensing applications from detecting DNA and other biomolecules, to detecting cancer cells, spores and viruses," Cunningham said. "More exotic applications, such as personalized medicine based on an individual's genetic profile, may also be possible."

Funding was provided by the National Science Foundation and SRU Biosystems. Part of the work was carried out in the university's Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
James E. Kloeppel, Physical Sciences Editor

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Unraveling the light of fireflies December 17th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Discoveries

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Quantum Dots/Rods

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE