Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Method Safely Deposits Novel Metal Oxide Thin Films on Substrates

Chemist James Garvey has developed a way to deposit metal oxide onto a polymeric substrate, as shown in this scanning electron microscope image, magnified 30,000 times.
Chemist James Garvey has developed a way to deposit metal oxide onto a polymeric substrate, as shown in this scanning electron microscope image, magnified 30,000 times.

Abstract:
University at Buffalo chemists have developed a novel way to grow chemically pure, zinc oxide thin films characterized by dense, bristle-like nanostructures and a new method for depositing them on temperature-sensitive substrates, including polymers, plastics and tapes.

Method Safely Deposits Novel Metal Oxide Thin Films on Substrates

Buffalo, NY | Posted on September 11th, 2007

The research, published online last month in the Journal of Physical Chemistry, may make possible the deposition of versatile zinc oxide films onto flexible surfaces, enabling the development of more efficient solar cells, liquid-crystal displays, chemical sensors and optoelectronic devices.

The issue of the journal commemorates the career of Richard E. Smalley, a pioneer of nanotechnology, with whom the lead UB author, James F. Garvey, Ph.D., professor of chemistry, worked while on sabbatical in 1995.

High-quality zinc oxide thin films are versatile and can be fabricated into many shapes, including films, nanorods and nanoparticles. However, there is a drawback: They usually are deposited at high temperatures, which can damage or even melt the substrate they are coating.

"That makes it impossible to coat plastic, a hard drive, an electronic device or even contact lenses since the deposition process damages the underlying surface," Garvey said.

By contrast, the UB researchers have developed a technique in which the metal oxide molecules are cool enough to safely coat temperature-sensitive substrates.

The UB researchers grow the thin films by first reacting zinc metal and oxygen in the presence of a high power, electrical arc discharge.

The method they developed, called Pulsed Arc Molecular Beam Deposition (PAMBD), strikes a discharge between two pure zinc rods.

"This lightening-like discharge creates a bright, blue plasma five times hotter than the surface of the sun," Garvey said.

At these high temperatures, the pure zinc metal is vaporized and reacts completely with an oxygen gas pulse to create chemically zinc oxide molecules.

The gaseous zinc oxide is then sprayed through a tiny aperture, a process that results in cooling the expanding gas down to about 50 degrees Kelvin, he explained, allowing the beam of now cold metal oxides to safely coat even the most temperature-sensitive surfaces.

"This is an enabling technology that will allow for the deposition of thin films on batteries, credit cards, on any flexible surface you have," Garvey said, adding that the UB process can use any metal and a wide array of different metal oxides can be produced easily.

"Since it is a pulsed technique, the thickness of the resulting films can be precisely controlled," he noted. "In this way, our PAMBD source is really a high-temperature chemical reactor that generates metal oxide molecules on demand and then rapidly cools them down for subsequent coating of any surface."

The chemists now are working with researchers in the UB Department of Physics to use the thin films and the deposition technique to create nanorods and spintronic devices.

In addition to Garvey, co-authors on the paper are Chi-Tung Chiang, Ph.D., post-doctoral associate, and Robert L. DeLeon, Ph.D., adjunct associate professor, both in the Department of Chemistry in the UB College of Arts and Sciences.

The research was funded by the Missile Defense Agency of the U.S. Department of Defense.

####

About University at Buffalo
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Ellen Goldbaum

716-645-5000 ext 1415

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Materials/Metamaterials

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Announcements

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Military

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

2015 Nanonics Image Contest January 29th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE