Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Method Safely Deposits Novel Metal Oxide Thin Films on Substrates

Chemist James Garvey has developed a way to deposit metal oxide onto a polymeric substrate, as shown in this scanning electron microscope image, magnified 30,000 times.
Chemist James Garvey has developed a way to deposit metal oxide onto a polymeric substrate, as shown in this scanning electron microscope image, magnified 30,000 times.

Abstract:
University at Buffalo chemists have developed a novel way to grow chemically pure, zinc oxide thin films characterized by dense, bristle-like nanostructures and a new method for depositing them on temperature-sensitive substrates, including polymers, plastics and tapes.

Method Safely Deposits Novel Metal Oxide Thin Films on Substrates

Buffalo, NY | Posted on September 11th, 2007

The research, published online last month in the Journal of Physical Chemistry, may make possible the deposition of versatile zinc oxide films onto flexible surfaces, enabling the development of more efficient solar cells, liquid-crystal displays, chemical sensors and optoelectronic devices.

The issue of the journal commemorates the career of Richard E. Smalley, a pioneer of nanotechnology, with whom the lead UB author, James F. Garvey, Ph.D., professor of chemistry, worked while on sabbatical in 1995.

High-quality zinc oxide thin films are versatile and can be fabricated into many shapes, including films, nanorods and nanoparticles. However, there is a drawback: They usually are deposited at high temperatures, which can damage or even melt the substrate they are coating.

"That makes it impossible to coat plastic, a hard drive, an electronic device or even contact lenses since the deposition process damages the underlying surface," Garvey said.

By contrast, the UB researchers have developed a technique in which the metal oxide molecules are cool enough to safely coat temperature-sensitive substrates.

The UB researchers grow the thin films by first reacting zinc metal and oxygen in the presence of a high power, electrical arc discharge.

The method they developed, called Pulsed Arc Molecular Beam Deposition (PAMBD), strikes a discharge between two pure zinc rods.

"This lightening-like discharge creates a bright, blue plasma five times hotter than the surface of the sun," Garvey said.

At these high temperatures, the pure zinc metal is vaporized and reacts completely with an oxygen gas pulse to create chemically zinc oxide molecules.

The gaseous zinc oxide is then sprayed through a tiny aperture, a process that results in cooling the expanding gas down to about 50 degrees Kelvin, he explained, allowing the beam of now cold metal oxides to safely coat even the most temperature-sensitive surfaces.

"This is an enabling technology that will allow for the deposition of thin films on batteries, credit cards, on any flexible surface you have," Garvey said, adding that the UB process can use any metal and a wide array of different metal oxides can be produced easily.

"Since it is a pulsed technique, the thickness of the resulting films can be precisely controlled," he noted. "In this way, our PAMBD source is really a high-temperature chemical reactor that generates metal oxide molecules on demand and then rapidly cools them down for subsequent coating of any surface."

The chemists now are working with researchers in the UB Department of Physics to use the thin films and the deposition technique to create nanorods and spintronic devices.

In addition to Garvey, co-authors on the paper are Chi-Tung Chiang, Ph.D., post-doctoral associate, and Robert L. DeLeon, Ph.D., adjunct associate professor, both in the Department of Chemistry in the UB College of Arts and Sciences.

The research was funded by the Missile Defense Agency of the U.S. Department of Defense.

####

About University at Buffalo
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Ellen Goldbaum

716-645-5000 ext 1415

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Materials/Metamaterials

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Aromatic food chemistry to the making of copper nanowires November 24th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Military

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

MEMS Industry Group's 10th Annual Executive Conference Showcases Rapid Innovation in MEMS/Sensors: Emphasizes Spirit of Collaboration, Supporting First Open-Source Algorithm Community, New Standardization Efforts November 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE