Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Method Safely Deposits Novel Metal Oxide Thin Films on Substrates

Chemist James Garvey has developed a way to deposit metal oxide onto a polymeric substrate, as shown in this scanning electron microscope image, magnified 30,000 times.
Chemist James Garvey has developed a way to deposit metal oxide onto a polymeric substrate, as shown in this scanning electron microscope image, magnified 30,000 times.

Abstract:
University at Buffalo chemists have developed a novel way to grow chemically pure, zinc oxide thin films characterized by dense, bristle-like nanostructures and a new method for depositing them on temperature-sensitive substrates, including polymers, plastics and tapes.

Method Safely Deposits Novel Metal Oxide Thin Films on Substrates

Buffalo, NY | Posted on September 11th, 2007

The research, published online last month in the Journal of Physical Chemistry, may make possible the deposition of versatile zinc oxide films onto flexible surfaces, enabling the development of more efficient solar cells, liquid-crystal displays, chemical sensors and optoelectronic devices.

The issue of the journal commemorates the career of Richard E. Smalley, a pioneer of nanotechnology, with whom the lead UB author, James F. Garvey, Ph.D., professor of chemistry, worked while on sabbatical in 1995.

High-quality zinc oxide thin films are versatile and can be fabricated into many shapes, including films, nanorods and nanoparticles. However, there is a drawback: They usually are deposited at high temperatures, which can damage or even melt the substrate they are coating.

"That makes it impossible to coat plastic, a hard drive, an electronic device or even contact lenses since the deposition process damages the underlying surface," Garvey said.

By contrast, the UB researchers have developed a technique in which the metal oxide molecules are cool enough to safely coat temperature-sensitive substrates.

The UB researchers grow the thin films by first reacting zinc metal and oxygen in the presence of a high power, electrical arc discharge.

The method they developed, called Pulsed Arc Molecular Beam Deposition (PAMBD), strikes a discharge between two pure zinc rods.

"This lightening-like discharge creates a bright, blue plasma five times hotter than the surface of the sun," Garvey said.

At these high temperatures, the pure zinc metal is vaporized and reacts completely with an oxygen gas pulse to create chemically zinc oxide molecules.

The gaseous zinc oxide is then sprayed through a tiny aperture, a process that results in cooling the expanding gas down to about 50 degrees Kelvin, he explained, allowing the beam of now cold metal oxides to safely coat even the most temperature-sensitive surfaces.

"This is an enabling technology that will allow for the deposition of thin films on batteries, credit cards, on any flexible surface you have," Garvey said, adding that the UB process can use any metal and a wide array of different metal oxides can be produced easily.

"Since it is a pulsed technique, the thickness of the resulting films can be precisely controlled," he noted. "In this way, our PAMBD source is really a high-temperature chemical reactor that generates metal oxide molecules on demand and then rapidly cools them down for subsequent coating of any surface."

The chemists now are working with researchers in the UB Department of Physics to use the thin films and the deposition technique to create nanorods and spintronic devices.

In addition to Garvey, co-authors on the paper are Chi-Tung Chiang, Ph.D., post-doctoral associate, and Robert L. DeLeon, Ph.D., adjunct associate professor, both in the Department of Chemistry in the UB College of Arts and Sciences.

The research was funded by the Missile Defense Agency of the U.S. Department of Defense.

####

About University at Buffalo
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Ellen Goldbaum

716-645-5000 ext 1415

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Materials/Metamaterials

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic