Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Snapshots of electrons

August 13th, 2007

Snapshots of electrons

Abstract:
No flash of light can be shorter than the time it takes the wave carrying the flash to perform a full oscillation. A team headed by Prof. Ferenc Krausz, Director, Max Planck Institute of Quantum Optics in Munich, Germany, has now succeeded in generating - for the first time - flashes of intense laser light that deliver more than half of their energy within a single wellcontrolled wave cycle. Atoms exposed to this extreme light pulse emit an attosecond X-ray pulse (1 attosecond = one billionth of a billionth of a second) whose wave components, if oscillating more slowly, would represent nearly all colours of visible light, all the way from blue through green and yellow to red. The resultant "white" pulse has an expected duration of about 100 attoseconds and is composed of more than a million X-ray photons. Therefore, it is brief enough, and powerful enough to capture the motion of electrons moving on molecular orbitals. Real-time observation of the electrons that bind atoms together will provide invaluable insight into the microscopic origin of the formation and deformation of molecules. The results were reported in the July issue of New Journal of Physics and featured on the cover of Science (August 10, 2007).

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Announcements

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Tools

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic