Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A Simple Magnet Can Control the Color of a Liquid, Making New Technologies Possible, UCR Nanotechnologists Report

Image shows the solution of iron oxide in water changing color under a magnetic field, with increasing strength of the field from left to right. Photo credit: Yin laboratory, UCR.
Image shows the solution of iron oxide in water changing color under a magnetic field, with increasing strength of the field from left to right. Photo credit: Yin laboratory, UCR.

Abstract:
Research by Yadong Yin and colleagues will be featured on the inside cover of Angewandte Chemie, a top science journal

A Simple Magnet Can Control the Color of a Liquid, Making New Technologies Possible, UCR Nanotechnologists Report

Riverside, CA | Posted on July 3rd, 2007

University of California, Riverside nanotechnologists have succeeded in controlling the color of very small particles of iron oxide suspended in water simply by applying an external magnetic field to the solution. The discovery has potential to greatly improve the quality and size of electronic display screens and to enable the manufacture of products such as erasable and rewritable electronic paper and ink that can change color electromagnetically.

In their experiments, the researchers found that by changing the strength of the magnetic field they were able to change the color of the iron oxide solution - similar to adjusting the color of a television screen image.

When the strength of the magnetic field is changed, it alters the arrangement of the spherical iron oxide particles in solution, thereby modifying how light falling on the particles passes through or is deflected by the solution.

Study results appear in Angewandte Chemie International Edition's online edition today. The research paper is scheduled to appear in print in issue 34 of the journal. Identified by Angewandte Chemie as a "very important paper," the research will be featured on the inside cover of the print issue.

"The key is to design the structure of iron oxide nanoparticles through chemical synthesis so that these nanoparticles self-assemble into three-dimensionally ordered colloidal crystals in a magnetic field," said Yadong Yin, an assistant professor of chemistry who led the research.

A nanoparticle is a microscopic particle whose size is measured in nanometers, a nanometer being a billionth of a meter. (A pin head is 1 million nanometers wide.)

A colloid is a substance comprised of small particles uniformly distributed in another substance. Milk, paint and blood are examples of colloids.

"By reflecting light, these crystals - also called photonic crystals - show brilliant colors," Yin said. "Ours is the first report of a photonic crystal that is fully tunable in the visible range of the electromagnetic spectrum, from violet light to red light."

A photonic crystal controls the flow of light (photons) and works like a semiconductor for light. The nanoparticles' spacing dictates the wavelength of light that a photonic crystal reflects.

Iron oxide (formula: Fe3O4) nanoparticles are "superparamagnetic," meaning that they turn magnetic only in the presence of an external magnetic field. In contrast, "ferromagnetic" materials become magnetized in a magnetic field and retain their magnetism when the field is removed.

The researchers used the superparamagnetic property of iron oxide particles to tune the spacing between nanoparticles, and therefore the wavelength of the light reflection - or the color of the colloidal crystals - by changing the strength of the external magnetic field.

"Other reported photonic crystals can only reflect light with a fixed wavelength," Yin said. "Our crystals, on the other hand, show a rapid, wide and fully reversible optical response to the external magnetic field."

Photonic materials such as those used by Yin and his team could help in the fabrication of new optical microelectromechanical systems and reflective color display units. They also have applications in telecommunication (fiber optics), sensors and lasers.

"This is an elegant method that allows researchers in the field to assemble photonic crystals and control their spacing by using a magnetic field," said Orlin Velev, an associate professor of chemical and biomolecular engineering at North Carolina State University, Raleigh, N.C., who was not involved in the research. "A simple magnet can be used to change the color of a suspension throughout the whole visible spectra. This has potential to result in usable precursors for various photonic devices."

"What should make the technology commercially attractive is that iron oxide is cheap, non-toxic and available in plenty," Yin said.

Yin explained that the new technology can be used to make an inexpensive color display by forming millions of small pixels using the photonic crystals. "A different color for each pixel can be assigned using a magnetic field," he said. "The advantage is that you need just one material - for example, photonic crystals like iron oxide - for all the pixels. Moreover, you don't need to generate light in each pixel. You would be using reflected light to create the images - a form of recycling."

Yin was joined in the research by UC Riverside's Jianping Ge, a postdoctoral researcher, and Yongxing Hu, a first-year graduate student in the Department of Chemistry.

The UCR Office of Technology Commercialization has filed a patent application on the technology.

####

About University of California, Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit http://www.ucr.edu or call (951) UCR-NEWS.

For more information, please click here

Contacts:
Iqbal Pittalwala
951.827.6050

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project