Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A Simple Magnet Can Control the Color of a Liquid, Making New Technologies Possible, UCR Nanotechnologists Report

Image shows the solution of iron oxide in water changing color under a magnetic field, with increasing strength of the field from left to right. Photo credit: Yin laboratory, UCR.
Image shows the solution of iron oxide in water changing color under a magnetic field, with increasing strength of the field from left to right. Photo credit: Yin laboratory, UCR.

Abstract:
Research by Yadong Yin and colleagues will be featured on the inside cover of Angewandte Chemie, a top science journal

A Simple Magnet Can Control the Color of a Liquid, Making New Technologies Possible, UCR Nanotechnologists Report

Riverside, CA | Posted on July 3rd, 2007

University of California, Riverside nanotechnologists have succeeded in controlling the color of very small particles of iron oxide suspended in water simply by applying an external magnetic field to the solution. The discovery has potential to greatly improve the quality and size of electronic display screens and to enable the manufacture of products such as erasable and rewritable electronic paper and ink that can change color electromagnetically.

In their experiments, the researchers found that by changing the strength of the magnetic field they were able to change the color of the iron oxide solution - similar to adjusting the color of a television screen image.

When the strength of the magnetic field is changed, it alters the arrangement of the spherical iron oxide particles in solution, thereby modifying how light falling on the particles passes through or is deflected by the solution.

Study results appear in Angewandte Chemie International Edition's online edition today. The research paper is scheduled to appear in print in issue 34 of the journal. Identified by Angewandte Chemie as a "very important paper," the research will be featured on the inside cover of the print issue.

"The key is to design the structure of iron oxide nanoparticles through chemical synthesis so that these nanoparticles self-assemble into three-dimensionally ordered colloidal crystals in a magnetic field," said Yadong Yin, an assistant professor of chemistry who led the research.

A nanoparticle is a microscopic particle whose size is measured in nanometers, a nanometer being a billionth of a meter. (A pin head is 1 million nanometers wide.)

A colloid is a substance comprised of small particles uniformly distributed in another substance. Milk, paint and blood are examples of colloids.

"By reflecting light, these crystals - also called photonic crystals - show brilliant colors," Yin said. "Ours is the first report of a photonic crystal that is fully tunable in the visible range of the electromagnetic spectrum, from violet light to red light."

A photonic crystal controls the flow of light (photons) and works like a semiconductor for light. The nanoparticles' spacing dictates the wavelength of light that a photonic crystal reflects.

Iron oxide (formula: Fe3O4) nanoparticles are "superparamagnetic," meaning that they turn magnetic only in the presence of an external magnetic field. In contrast, "ferromagnetic" materials become magnetized in a magnetic field and retain their magnetism when the field is removed.

The researchers used the superparamagnetic property of iron oxide particles to tune the spacing between nanoparticles, and therefore the wavelength of the light reflection - or the color of the colloidal crystals - by changing the strength of the external magnetic field.

"Other reported photonic crystals can only reflect light with a fixed wavelength," Yin said. "Our crystals, on the other hand, show a rapid, wide and fully reversible optical response to the external magnetic field."

Photonic materials such as those used by Yin and his team could help in the fabrication of new optical microelectromechanical systems and reflective color display units. They also have applications in telecommunication (fiber optics), sensors and lasers.

"This is an elegant method that allows researchers in the field to assemble photonic crystals and control their spacing by using a magnetic field," said Orlin Velev, an associate professor of chemical and biomolecular engineering at North Carolina State University, Raleigh, N.C., who was not involved in the research. "A simple magnet can be used to change the color of a suspension throughout the whole visible spectra. This has potential to result in usable precursors for various photonic devices."

"What should make the technology commercially attractive is that iron oxide is cheap, non-toxic and available in plenty," Yin said.

Yin explained that the new technology can be used to make an inexpensive color display by forming millions of small pixels using the photonic crystals. "A different color for each pixel can be assigned using a magnetic field," he said. "The advantage is that you need just one material - for example, photonic crystals like iron oxide - for all the pixels. Moreover, you don't need to generate light in each pixel. You would be using reflected light to create the images - a form of recycling."

Yin was joined in the research by UC Riverside's Jianping Ge, a postdoctoral researcher, and Yongxing Hu, a first-year graduate student in the Department of Chemistry.

The UCR Office of Technology Commercialization has filed a patent application on the technology.

####

About University of California, Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit http://www.ucr.edu or call (951) UCR-NEWS.

For more information, please click here

Contacts:
Iqbal Pittalwala
951.827.6050

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

PEN Inc. Announces Strategy to Broaden Clarity Branded Products Business February 4th, 2016

QD Vision Named to the 2015 Global Cleantech 100 Under the Radar List: Quantum Dot Leader Recognized for Clean Technology Innovation January 26th, 2016

MEMS

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

SITRI and Accelink Announce Cooperative Agreement on Opto-Electronic Communication December 31st, 2015

Nanodevices at one-hundredth the cost: New techniques for building microelectromechanical systems show promise December 20th, 2015

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Discoveries

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic