Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Discovery could help bring down price of DNA sequencing

Abstract:
In May, Nobel Laureate James D. Watson, the scientist who co-discovered the structure of DNA, became the first person to receive his own complete personal genome -- all three billion base pairs of his DNA code sequenced. The cost was $1 million, and the process took two months.

Discovery could help bring down price of DNA sequencing

EVANSTON, IL | Posted on June 29th, 2007

A million dollars for a map of all your genes is way out of reach for most people. The National Institutes of Health would like to bring it down to $1,000 by the year 2014, but plenty of technological hurdles remain before you'll be able to secure your genetic blueprint for this more affordable price.

One promising method for speeding up DNA sequencing, and thus reducing its cost, is nanopore sequencing, where DNA moves through a tiny hole, much like thread going through a needle. The technique can detect individual DNA molecules, but the DNA gallops through so fast that it is impossible to read the individual letters, or bases, and determine the sequence. (The four letters of the genomic alphabet are A, T, G and C, each representing one of the base nucleotides that make up DNA.)

Using a theory based on classical hydrodynamics, a Northwestern University researcher now has explained the nature of the resistive force that determines the speed of the DNA as it moves through the nanopore, which is just five to 10 nanometers wide. (One nanometer is a billionth of a meter.) This understanding could help scientists figure out how to slow the DNA down enough to make it readable and usable -- for medical and biotechnology applications, in particular.

Sandip Ghosal, associate professor of mechanical engineering in Northwestern's McCormick School of Engineering and Applied Science, is the first to apply classical hydrodynamics to the interaction of DNA with a nanopore. The findings, an important step toward achieving single-base resolution in nanopore sequencing, were published in the June 8 issue of the journal Physical Review Letters (PRL).

"DNA is pulled through the nanopore's channel by an electric force, but there also is a resistive force," said Ghosal, sole author of the PRL paper. "My idea was that the resistance was coming from fluid friction, which could explain the speed measurements taken in experimental studies."

In Ghosal's explanation, the DNA pulls some of the fluid surrounding the molecule through the channel with it. The lubrication forces arising in this fluid layer create the resistance that opposes the electrical pulling force. Ghosal's calculations in the PRL paper show that his theoretical model is consistent with experimental results and explains the DNA's speed.

"Understanding the mechanics of DNA translocation will allow scientists to make alterations, to figure out how to apply more friction," said Ghosal, who has proposed using a coating on the channel walls to slow down the flow of the DNA.

A copy of the Physical Review Letters paper can be viewed at http://www.mech.northwestern.edu/fac/ghosal/ghosal_publications.htm .

####

For more information, please click here

Contacts:
Megan Fellman
(847) 491-3115


Sandip Ghosal
847-467-5990

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Human Interest/Art

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project