Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NASA Nanotechnology Space Sensor Test Successful in Orbit

NASA recently tested the first nanotechnology-based electronic device to fly in space. The test showed that the "nanosensor" could monitor trace gases inside a spaceship. This technology could lead to smaller, more capable environmental monitors and smoke detectors in future crew habitats.

NASA Nanotechnology Space Sensor Test Successful in Orbit

MOFFETT FIELD, CA | Posted on June 18th, 2007

NASA's Nano ChemSensor Unit hitched a ride to Earth orbit on March 9, 2007, as a secondary payload experiment on the U.S. Naval Academy's MidSTAR-1 satellite. The sensor test was powered on May 24.

"The nanosensor worked successfully in space," said Jing Li, a scientist at NASA's Ames Research Center in California's Silicon Valley. Li is the principal investigator for the test. "We demonstrated that nanosensors can survive in space conditions and the extreme vibrations and gravity change that occur during launch," she said.

On long missions in space, harmful chemical contaminants may build up gradually in the crew's air supply. Nanosensors will be able to detect minute amounts of these contaminants and alert the crew that there may be a problem.

The goal of the experiment was to prove that nanosensors, made of tiny carbon nanotubes coated with sensing materials, could withstand the rigors of space flight. Li's experiment also helped scientists learn how well a nanosensor could endure microgravity, heat and cosmic radiation in space.

Scientists use a specific sensing material for each chemical they wish to detect. When a trace chemical touches the sensing material, it can trigger a chemical reaction that causes electric current flowing through the sensor to increase or decrease.

To conduct the sensor test in space, nitrogen gas containing 20 parts per million of nitrogen dioxide was injected into a small chamber. The chamber also held a computer test chip with 32 nanosensors. The test measured the change in electricity passing through the nanosensors after the nitrogen dioxide and the sensing materials made contact.

The change was similar to the effect fluctuating electrical current has on a light bulb. Changes in the bulb's brightness correspond to the number of chemical molecules detected.

Less than a half-inch across, the test chip with its 32 nanosensors is smaller and less costly than other analytical instruments that could be used for the same measurements. Other advantages of nanosensors include low power use and durability.

Scientists have developed chemical sensors using carbon nanotubes and other nanostructures to detect ammonia, nitrogen oxides, hydrogen peroxide, hydrocarbons, volatile organic compounds and other gases.

Funding for the experiment included support from NASA's Exploration Technology Development Program. For more information about NASA's exploration mission, visit:

For more information about NASA and agency programs, visit:


About NASA
NASA's mission is to pioneer the future in space exploration, scientific discovery, and aeronautics research.

To do that, thousands of people have been working around the world -- and off of it -- for more than 45 years, trying to answer some basic questions. What's out there in space? How do we get there? What will we find? What can we learn there, or learn just by trying to get there, that will make life better here on Earth?

For more information, please click here

Beth Dickey/Melissa Mathews
Headquarters, Washington

John Bluck
Ames Research Center, Moffett Field, Calif.

Copyright © NASA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Nanoantenna lighting-rod effect produces fast optical switches October 24th, 2016

New nanomedicine approach aims to improve HIV drug therapies October 24th, 2016

New method increases energy density in lithium batteries: Novel technique may lead to longer battery life in portable electronics and electrical vehicles October 24th, 2016


Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

National Space Society Congratulates Orbital ATK on a Successful Return to Flight for the Antares October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project