Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Making strides in quantum dot infrared photodetectors

Abstract:
Researchers at Northwestern University have made significant strides in the development of quantum dot infrared photodetectors -- technology that may provide new imaging techniques with applications in medical and biological imaging, environmental and chemical monitoring, night vision and infrared imaging from space.

Making strides in quantum dot infrared photodetectors

EVANSTON, IL | Posted on May 17th, 2007

Conventional infrared photon detector technology for imaging applications typically requires that the detector be cooled to very low temperatures -- approximately 77 degrees Kelvin. This cooling requirement adds significant cost, bulk and power consumption to the imaging systems, therefore limiting their usability. By using nanotechnology to form quantum dots, researchers at Northwestern's Center for Quantum Devices (CQD) are one step closer to achieving the goal of developing high-performance imaging techniques that can operate at higher temperatures.

Quantum dots, also known as "artificial atoms," have been widely investigated as a means of improving a variety of electronic and optoelectronic devices. The small size of quantum dots, usually around 10 nanometers, gives them a unique physical property of three-dimensional confinement, which can enable higher operating temperatures when used in infrared detector design.

"The development of an infrared photon detector that can operate at higher temperatures will enable the use of cheaper, lighter and more efficient cooling methods in the design of infrared imaging systems," said Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science and director of the Center for Quantum Devices. "This will allow the use of infrared detectors in a much wider range of applications."

Researchers at CQD made a great breakthrough in the development of high-performance quantum dot infrared photodetectors (QDIP). They have developed a QDIP that operates at room temperature with a peak detection wavelength in the technologically important middle wavelength infrared window -- wavelengths between three and five microns are important because they are not susceptible to absorption by Earth's atmosphere. The QDIP is based on a hybrid indium arsenide quantum dot and an indium gallium arsenide quantum well structure grown on an indium phosphide substrate.

The specific detectivity and quantum efficiency at 150 degrees Kelvin were 41010 cmHz1/2/W and 35 percent, respectively. This record high performance was published in the March 26, 2007, issue of Applied Physics Letters, Vol. 90 No. 13. In devices developed since publication, the performance was further improved with a quantum efficiency of 48 percent through the optimization of the quantum dot growth, which led to stronger infrared absorption.

Researchers at CQD have used this technology to build an infrared camera, or focal plane array (FPA), based on this device. Thermal imaging was demonstrated at temperatures up to 200 degrees Kelvin -- the highest ever demonstrated for a QDIP focal plan array.

A paper on this work was published in the May 14, 2007, issue of Applied Physics Letters, Vol. 90 No. 20.

This work was presented at the 25th Annual Army Research Conference in November 2006 and won a Best Paper Award at the conference. This work also was presented as an invited talk at the SPIE Defense and Security Symposium in April 2007 and was presented at the 8th International Conference on Mid-Infrared Optoelectronics: Materials and Devices in May 2007.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Discoveries

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Military

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Aerospace/Space

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Acclaimed Science Fiction Author Dr. Jerry Pournelle Wins the National Space Society Robert A. Heinlein Award April 13th, 2016

Quantum Dots/Rods

Superfast light source made from artificial atom April 28th, 2016

Quantum dots enhance light-to-current conversion in layered semiconductors: Research demonstrates promise of a new approach for improving solar cells, photocatalysts, light sensors, and other optoelectronic devices April 11th, 2016

Revealing the ion transport at nanoscale March 30th, 2016

Sweet 'quantum dots' light the way for new HIV and Ebola treatment March 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic