Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Making strides in quantum dot infrared photodetectors

Abstract:
Researchers at Northwestern University have made significant strides in the development of quantum dot infrared photodetectors -- technology that may provide new imaging techniques with applications in medical and biological imaging, environmental and chemical monitoring, night vision and infrared imaging from space.

Making strides in quantum dot infrared photodetectors

EVANSTON, IL | Posted on May 17th, 2007

Conventional infrared photon detector technology for imaging applications typically requires that the detector be cooled to very low temperatures -- approximately 77 degrees Kelvin. This cooling requirement adds significant cost, bulk and power consumption to the imaging systems, therefore limiting their usability. By using nanotechnology to form quantum dots, researchers at Northwestern's Center for Quantum Devices (CQD) are one step closer to achieving the goal of developing high-performance imaging techniques that can operate at higher temperatures.

Quantum dots, also known as "artificial atoms," have been widely investigated as a means of improving a variety of electronic and optoelectronic devices. The small size of quantum dots, usually around 10 nanometers, gives them a unique physical property of three-dimensional confinement, which can enable higher operating temperatures when used in infrared detector design.

"The development of an infrared photon detector that can operate at higher temperatures will enable the use of cheaper, lighter and more efficient cooling methods in the design of infrared imaging systems," said Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science and director of the Center for Quantum Devices. "This will allow the use of infrared detectors in a much wider range of applications."

Researchers at CQD made a great breakthrough in the development of high-performance quantum dot infrared photodetectors (QDIP). They have developed a QDIP that operates at room temperature with a peak detection wavelength in the technologically important middle wavelength infrared window -- wavelengths between three and five microns are important because they are not susceptible to absorption by Earth's atmosphere. The QDIP is based on a hybrid indium arsenide quantum dot and an indium gallium arsenide quantum well structure grown on an indium phosphide substrate.

The specific detectivity and quantum efficiency at 150 degrees Kelvin were 4×1010 cmHz1/2/W and 35 percent, respectively. This record high performance was published in the March 26, 2007, issue of Applied Physics Letters, Vol. 90 No. 13. In devices developed since publication, the performance was further improved with a quantum efficiency of 48 percent through the optimization of the quantum dot growth, which led to stronger infrared absorption.

Researchers at CQD have used this technology to build an infrared camera, or focal plane array (FPA), based on this device. Thermal imaging was demonstrated at temperatures up to 200 degrees Kelvin -- the highest ever demonstrated for a QDIP focal plan array.

A paper on this work was published in the May 14, 2007, issue of Applied Physics Letters, Vol. 90 No. 20.

This work was presented at the 25th Annual Army Research Conference in November 2006 and won a Best Paper Award at the conference. This work also was presented as an invited talk at the SPIE Defense and Security Symposium in April 2007 and was presented at the 8th International Conference on Mid-Infrared Optoelectronics: Materials and Devices in May 2007.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Discoveries

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Military

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Teri Odom and Richard Van Duyne Honored by Department of Defense: Each will receive $3 million over five years to conduct high-risk, high-payoff research March 31st, 2017

Aerospace/Space

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Quantum Dots/Rods

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project