Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Plan for cancer detector wins prize for Vanderbilt researchers

Prof. Todd Giorgio is flanked by graduate students Chinmay Soman (left) and
Ashwath Jayagopal, who recently placed third in the NanoNexus Idea to Product competition.
Prof. Todd Giorgio is flanked by graduate students Chinmay Soman (left) and Ashwath Jayagopal, who recently placed third in the NanoNexus Idea to Product competition.

Abstract:
A plan to use nanotechnology to produce a new type of cancer detector won the third-place award at the NanoNexus2007 conference held last month at Oak Ridge National Laboratory.

Plan for cancer detector wins prize for Vanderbilt researchers

Nashville, TN | Posted on May 9th, 2007

The detector has been under development for two years by Vanderbilt graduate student Chinmay Soman working under the supervision of Todd Giorgio, professor of biomedical engineering. They have demonstrated that the simple and inexpensive system, which can be built from off-the-shelf components, can rapidly detect the presence of cancer biomarkers - telltale proteins in body fluids that can signal the presence of malignant tumors - at very low levels.

The NanoNexus Idea to Product competition, which took place on April 3-4, was based not only on the technical merit of the proposed device but also on the plan that the researchers advanced for turning it into a commercial product. The judges were drawn from nanotechnology companies, venture capital firms and government research laboratories. Soman and fellow biomedical engineering graduate student Ashwath Jayagopal presented the cancer-detection technology and an associated business plan that won the third-place award of $2,500.

The Quantum Dot Enabled Multiplexed Antigen Profiling (QuaD-MAP) system is based on the ability of nanoparticles to self-assemble - form structures without external prodding. The system starts with nanoscale fluorescent beads called quantum dots. These come in a range of different colors and are used to tag specific biological structures.

Another key component is antibodies, proteins produced by the body's immune system that recognize and bind to foreign substances. The researchers chemically attach antibodies onto the surface of the quantum dots that bind to a particular biomarker. When they mix them in liquid containing the biomarkers, the proteins act as bridges between the quantum dots, forming microscale ‘snowballs' from the nanoscale ‘snowflakes.' Within a matter of minutes, the fluorescent snowballs grow large enough that they can be easily detected by a flow cytometer, a standard hospital instrument used for counting and measuring blood cells. If the targeted biomarkers are not present, the quantum dots do not agglomerate and remain undetectable by the cytometer.

Vanderbilt has applied for a patent on the use of controlled nanoparticle agglomeration combined with characterization by flow cytometry as a novel method of protein detection.

"Biomarker research has been going on for some time and is just reaching the point where we are reasonably confident that biomarkers can be used for cancer detection," Giorgio said. "However, current methods for detecting biomarkers are complicated and expensive, particularly since it appears that it will take the simultaneous identification of several biomarkers to determine the presence of many cancers unambiguously."

That is one of the strengths of the QuaD-MAP approach: It can detect the presence of a number of different biomarkers simultaneously by attaching the antibodies to each biomarker to different-colored quantum dots.

"With this technology, a future scenario might be that you go to the doctor every year for an annual checkup; he draws about 10 cc's of your blood and runs it through our machine," said Soman. "The machine is equipped to detect the biomarkers for all the common types of cancer. Half an hour later it produces a list of the biomarkers that it has found. And then either a software program or the physician examines this list to determine whether you have any cancers that need treating."

Although they don't have any hard-and-fast figures, the researchers say that such a test could be very inexpensive. Quantum dots are expensive on a per gram basis, but only a minute quantity is used in each test.

"For our commercial plan, we proposed a variation on the Gillette razor model: Selling razors cheaply and profiting on the sale of the blades," Soman said. "There was a lot of interest in our approach because it gets around one of the major problems in the biomarker field - the need to license biomarkers that have been patented by hundreds of different people."

The researchers are focusing on lung cancer as an initial application because there is currently no adequate way to detect it at an early stage. According to the American Cancer Society's Cancer Facts and Figures 2007, only 16 percent of lung cancers are detected early, when they can be treated with a 50 percent survival rate. For the other 84 percent, the survival rate drops to 2 percent.

Currently, the researchers are looking for a small business that is interested in partnering with them to apply for a federal small business innovative research grant. "Since the technology is beyond the exploratory stage now, we think the SBIR is the way to go," Giorgio said.

####

For more information, please click here

Contacts:
David F. Salisbury, (615) 343-6803

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

Quantum Dots/Rods

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic