Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Intravenous nanoparticle gene therapy shows activity in stage IV lung cancer

Abstract:
A cancer-suppressing gene has been successfully delivered into the tumors of stage 4 lung cancer patients via an intravenously administered lipid nanoparticle in a phase I clinical trial at The University of Texas M. D. Anderson Cancer Center. The gene, FUS1, also was found to be active in the metastatic non-small cell lung cancer tumors.

Intravenous nanoparticle gene therapy shows activity in stage IV lung cancer

Houston, TX | Posted on April 17th, 2007

"We've treated 13 patients in this first-in-human study and we've seen an exciting proof of concept with no significant drug-related toxicity," says principal investigator Charles Lu, M.D., associate professor in M. D. Anderson's Department of Thoracic, Head and Neck Medical Oncology.

Blinded analysis of pretreatment and post-treatment biopsies of three patients' tumors show that expression of FUS1 was absent from pretreatment samples while a high level of FUS1 was expressed in tumors after treatment. FUS1 can induce apoptosis - programmed cell death - in cancer cells but is frequently lost when normal cells become cancerous.

Lu presented a poster on the study on April 17 at the late-breaking abstract session of the American Association for Cancer Research annual meeting in Los Angeles.

Other attempts at gene therapy have employed an adenovirus to deliver the therapeutic gene. "Here we are using a non-viral, non-infectious delivery system," Lu says.

The only clinically significant side effect so has been fever, but Lu says premedication with a steroid and diphenhydramine has eliminated that so far.

Previous gene therapy clinical trials also involved direct injection into tumors. "This is the first time anyone has shown that a gene can be injected and then be taken up and expressed in cancer cells at distant sites," said Jack Roth, M.D., professor of the M. D. Anderson Department of Thoracic and Cardiovascular Surgery and a pioneer in the field of gene therapy.

FUS1 can induce apoptosis - programmed cell death - in cancer cells but is absent in those cells. The FUS1 nanoparticle formulation was developed and tested in Roth's lab. It advanced to phase I clinical trial after a promising test on human non-small cell lung cancer in a mouse model.

FUS1 was discovered by a research team led by Roth at M. D. Anderson and by John Minna, M.D., of the Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, at The University of Texas Southwestern Medical Center at Dallas. Roth and Minna are the co-principal investigators of a National Cancer Institute Specialized Program of Research Excellence in Lung Cancer.

"As a clinician, I am very cautious about saying that we have shown clinical activity at this point. We have some encouraging data. The number of patients is too small to draw any definite conclusions, however," Lu said.

Three patients of eight who received two or more doses experienced stable disease for three to seven months. Median survival time for all patients is 14.6 months, which Lu notes compares favorably to a seven-month median survival time for patients receiving second line therapy.

All patients on the trial had been treated with front line cisplatin combination chemotherapy, which failed to halt their disease. The clinical trial continues. No maximum tolerated dose has been established, Lu says.

The nanoparticle delivery system consists of a plasmid gene expression cassette loaded with DNA that encodes the FUS1 protein. This is wrapped tightly in a form of cholesterol to protect it from the body's defense mechanisms. The nanoparticles accumulate mainly in the lungs, particularly in the tumors, where the genes repeatedly express FUS1 tumor-suppressing proteins.

Lung cancer is the leading cause of cancer death in the United States, causing 160,000 deaths annually. About 80 percent of lung cancer is of the non-small cell type.

Other investigators on the project with Lu and Roth are Nancy Smyth Templeton, Ph.D., assistant professor in the Departments of Molecular and Cellular Biology and of Molecular Physiology and Biophysics at Baylor College of Medicine, who developed the lipid nanoparticle; Carmen Sepulveda, Ph.D., and John McMannis, Ph.D., M. D. Anderson Department of Stem Cell Transplantation; Lin Ji, Ph.D., Rajagopal Ramesh, Ph.D., and Gitanjali Jayachandran, Ph.D., all of the M. D. Anderson Department of Thoracic and Cardiovascular Surgery; Sean O'Connor, Ph.D., Coordinator of Regulatory Compliance in the GMP laboratory at M. D. Anderson; Marshall Hicks, M.D., and Reginald Munden, M.D., of the M. D. Anderson Department of Diagnostic Radiology; and J. Jack Lee, Ph.D., of the M. D. Anderson Department of Biostatistics.

The clinical trial was funded by the NCI SPORE grant and the William H. Goodwin Family Fund. FUS1 nanoparticle technology has been licensed to Introgen Therapeutics, Inc., which has no involvement with this study.

Introgen holds a licensing agreement with M. D. Anderson Cancer Center to commercialize products based on licensed technologies, and has the option to license future technologies under sponsored research agreements. The University of Texas System owns stock in Introgen. These arrangements are managed by M. D. Anderson in accordance with its conflict of interest policies.

####

About University of Texas M. D. Anderson Cancer Center
At M. D. Anderson Cancer Center, our mission is simple – to eliminate cancer. Achieving that goal begins with integrated programs in cancer treatment, clinical trials, education programs and cancer prevention.

To us, people are more than just their cancer symptoms. Compassion – along with innovative cancer treatment, cutting-edge cancer research, comprehensive education and research-based prevention of both common and rare cancers – has earned the gratitude of countless adult and pediatric cancer patients and their families. M. D. Anderson: life-saving, life-changing care, since 1941.

For more information, please click here

Contacts:
Scott Merville

713-792-0661

Copyright © University of Texas M. D. Anderson Cancer Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Human Interest/Art

Iran-Made Respiratory Nano Masks Provided to Hajj Pilgrims October 23rd, 2014

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork July 3rd, 2014

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE