Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Advancing How Computers and Electronics Work

Abstract:
Researchers work toward enhancing the smallest electronic components

Advancing How Computers and Electronics Work

RICHMOND, VA | Posted on March 19th, 2007

Researchers have made an important advance in the emerging field of ‘spintronics' that may one day usher in a new generation of smaller, smarter, faster computers, sensors and other devices, according to findings reported in today's issue of the journal Nature Nanotechnology.

The research field of ‘spintronics' is concerned with using the ‘spin' of an electron for storing, processing and communicating information.

The research team of electrical and computer engineers from the Virginia Commonwealth University's School of Engineering and the University of Cincinnati examined the ‘spin' of electrons in organic nanowires, which are ultra-small structures made from organic materials. These structures have a diameter of 50 nanometers, which is 2,000 times smaller than the width of a human hair. The spin of an electron is a property that makes the electron act like a tiny magnet. This property can be used to encode information in electronic circuits, computers, and virtually every other electronic gadget.

"In order to store and process information, the spin of an electron must be relatively robust. The most important property that determines the robustness of spin is the so-called ‘spin relaxation time,' which is the time it takes for the spin to ‘relax.' When spin relaxes, the information encoded in it is lost. Therefore, we want the spin relaxation time to be as long as possible," said corresponding author Supriyo Bandyopadhyay, Ph.D., a professor in the Department of Electrical and Computer Engineering at the VCU School of Engineering.

"Typically, the spin relaxation time in most materials is a few nanoseconds to a few microseconds. We are the first to study spin relaxation time in organic nanostructures and found that it can be as long as a second. This is at least 1000 times longer than what has been reported in any other system," Bandyopadhyay said.

The team fabricated their nanostructures from organic molecules that typically contain carbon and hydrogen atoms. In these materials, spin tends to remain relatively isolated from perturbations that cause it to relax. That makes the spin relaxation time very long.

The VCU-Cincinnati team was also able to pin down the primary spin relaxation mechanism in organic materials, which was not previously known. Specifically, they found that the principal spin relaxation mechanism is one where the spin relaxes when the electron collides with another electron, or any other obstacle it encounters when moving through the organic material. This knowledge can allow researchers to find means to make the spin relaxation time even longer.

"The organic spin valves we developed are based on self-assembled structures grown on flexible substrates which could have a tremendous impact on the rapidly developing field of plastic electronics, such as flexible panel displays," said Marc Cahay, Ph.D., a professor in the Department of Electrical and Computer Engineering at the University of Cincinnati. "If the organic compounds can be replaced by biomaterials, this would also open news areas of research for biomedical and bioengineering applications, such as ultra-sensitive sensors for early detection of various diseases."

"These are very exciting times to form interdisciplinary research teams and bring back the excitement about science and engineering in students at a very young age to raise them to become the future generations of nanopioneers," Cahay said.

The fact that the spin relaxation time in organic materials is exceptionally long makes them the ideal host materials for spintronic devices. Organic materials are also inexpensive, and therefore very desirable for making electronic devices.

The VCU-Cincinnati research advances nanotechnology, which is a rapidly growing field where engineers are developing techniques to create technical tools small enough to work at the atomic level. Additionally, by using nanoscale components researchers have the ability to pack a large number of devices within a very small area. The devices themselves are just billionths of a meter; and trillions of them can be packed into an area the size of a postage stamp. Furthermore, they consume very little energy when they process data.

In 1994, Bandyopadhyay and colleagues were the first group to propose the use of spin in classical computing. Then two years later, they were among the first researchers to propose the use of spin in quantum computing. The recent work goes a long way toward implementing some of these ideas.

The work is supported by the U.S. Air Force Office of Scientific Research and the National Science Foundation.

Sandipan Pamanik, a graduate student in the VCU School of Engineering's Department of Electrical and Computer Engineering, was first author of the study. The research team also included Carmen Stefanita, Ph.D., and graduate student, Sridhar Patibandla, both in the VCU Department of Electrical and Computer Engineering; and graduate students Kalyan Garre and Nick Harth from the University of Cincinnati's Department of Electrical and Computer Engineering.

EDITOR'S NOTE: A copy of the study is available to reporters in PDF format by email request from .

####

About Virginia Commonwealth University
About VCU and the VCU Medical Center: Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 30,000 students in nearly 200 certificate and degree programs in the arts, sciences and humanities. Sixty-three of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

For more information, please click here

Contacts:
Sathya Achia-Abraham
Virginia Commonwealth University
Phone: (804) 827-0890
Email:
http://www.news.vcu.edu

Wendy Beckman

University of Cincinnati
Phone: (513) 556-1826
Email:
http://www.uc.edu/news

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Spintronics

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Chip Technology

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Announcements

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE