Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Ford accelerates nanotechnology work into lightweight metals

March 13th, 2007

Ford accelerates nanotechnology work into lightweight metals

Abstract:
Ford Motor Company announced recently that it is using one of the most advanced laboratory devices in North America to accelerate its nanotechnology research into lighter-weight metals and plastics with greater strength, ultimately helping improve the safety and fuel economy of Ford cars and trucks.

The device, called the Local Electrode Atom Probe (LEAP), is housed at Northwestern University and is now one of only four such tools in North America. This new laboratory tool enables Ford to cut in half the amount of time it takes to analyze the molecular makeup of metals and plastics and determine ways to tailor the material to make lighter-weight and more durable parts.

Source:
reliableplant.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Automotive/Transportation

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project