Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > New Glass Bends Rule, but Doesn't Break It

March 10th, 2007

New Glass Bends Rule, but Doesn't Break It

Abstract:
In the past, researchers have created metallic glasses that can bend, just a bit, by mixing metal elements and tiny nanoparticles. Fractures in those materials tend to propagate until they run into a nanoparticle, where they are dispersed. Making such composites is difficult and costly. So, Wei Hua Wang, a physicist at the Chinese Academy of Science's Institute of Physics in Beijing, and his colleagues decided to look for a simpler solution. They played around with the composition of a long-known bulk metallic glass made from zirconium, aluminum, copper, and nickel. And they hit upon a simple recipe that yielded a mixture of hard, dense regions of the material surrounded by less dense soft zones. The result was that when the researchers then bent the material, fractures that began in one zone didn't propagate through the neighboring zones. So instead of one major crack fracturing the material, the glass dissipated the force into a multitude of tiny cracks and could bend even more than the previous composites.

Source:
sciencenow.sciencemag.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Materials/Metamaterials

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project