Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Manchester physicists pioneer new super-thin technology

Abstract:
Researchers have used the world's thinnest material to create a new type of technology, which could be used to make super-fast electronic components and speed up the development of drugs.

Manchester physicists pioneer new super-thin technology

Manchester, UK | Posted on February 28th, 2007

Physicists at The University of Manchester and The Max-Planck Institute in Germany have created a new kind of a membrane that is only one atom thick.

It's believed this super-small structure can be used to sieve gases, make ultra-fast electronic switches and image individual molecules with unprecedented accuracy.

The findings of the research team is published today (Thursday 1 March 2007) in the journal Nature.

Two years ago, scientists discovered a new class of materials that can be viewed as individual atomic planes pulled out of bulk crystals.

These one-atom-thick materials and in particular graphene - a gauze of carbon atoms resembling chicken wire - have rapidly become one of the hottest topics in physics.

However, it has remained doubtful whether such materials can exist in the free state, without being placed on top of other materials.

Now an international research team, led by Dr Jannik Meyer of The Max-Planck Institute in Germany and Professor Andre Geim of The University of Manchester has managed to make free-hanging graphene.

The team used a combination of microfabrication techniques used, for example, in the manufacturing of microprocessors.

A metallic scaffold was placed on top of a sheet of graphene, which was placed on a silicon chip. The chip was then dissolved in acids, leaving the graphene hanging freely in air or a vacuum from the scaffold.

The resulting membranes are the thinnest material possible and maintain a remarkably high quality.

Professor Geim - who works in the School of Physics and Astronomy at The University of Manchester - and his fellow researchers have also found the reason for the stability of such atomically-thin materials, which were previously presumed to be impossible.

They report that graphene is not perfectly flat but instead gently crumpled out of plane, which helps stabilise otherwise intrinsically unstable ultra-thin matter.

Professor Geim and his colleagues believe that the membranes they have created can be used like sieves, to filter light gases through the atomic mesh of the chicken wire structure, or to make miniature electro-mechanical switches.

It's also thought it may be possible to use them as a non-obscuring support for electron microscopy to study individual molecules.

This has significant implications for the development of medical drugs, as it will potentially allow the rapid analysis of the atomic structures of bio-active complex molecules.

"This is a completely new type of technology - even nanotechnology is not the right word to describe these new membranes," said Professor Geim.

"We have made proof-of-concept devices and believe the technology transfer to other areas should be straightforward. However, the real challenge is to make such membranes cheap and readily available for large-scale applications."

In addition to Meyer and Geim, researchers involved in this work include Kostya Novoselov and Tim Booth from The University of Manchester, Mikhail Katsnelson from The University of Nijmegen in the Netherlands, and Sigmar Roth of The Max Plank Institute in Germany.

The research of Professor Geim, Dr Kostya Novoselov and colleagues at the University of Manchester led to the discovery of a new class of materials called two-dimensional atomic crystals back in 2004. Professor Geim was recently awarded the 2007 Mott Medal and Prize by The Institute of Physics for his discovery of graphene and his 'remarkable contribution' to science.

####

About University of Manchester
By 2015 The University of Manchester aims to be among the top 25 universities in the world, at the highest international level of research excellence.

The University already has a global reputation for being at the forefront of innovative and enterprising research. With research funding in the region of £170 million rising per year, and Research Assessment Exercise (RAE) results that rival those of Oxford and Cambridge, The University of Manchester is on course to meet its target by 2015.

In the 2001 RAE the separate institutions UMIST and the Victoria University Manchester together accrued a total of 46 top grades of 5* and 5 for its research activity, while Oxford accrued 42 and Cambridge 48.

Prof Geim is available for interview, but only via email or telephone from Wednesday 28 February 2007 onwards.

Photographs of Professor Geim are available, along with an image of atomic gauze hanging on a scaffold of golden wires and an artist's impression of the chicken wire of carbon atoms.

For further information please contact Alex Waddington, Media Relations Officer, on 0161 306 3983, or

The full title of the paper published in Nature is 'The structure of suspended graphene sheets'. Copies are available on request.

Research collaborators: The Max Planck Institute for Solid State Research, Stuttgart, Germany, The Manchester Centre for Mesoscience and Nanotechnology, The University of Manchester, The Institute for Molecules and Materials, The Radboud University of Nijmegen, The Netherlands.

Previous releases on graphene for background:

Discovery of Two-Dimensional Fabric Denotes Dawn of New Materials Era
http://www.manchester.ac.uk/press/newsarchive/title,4655,en.htm

One-atom-thick materials promise a 'new industrial revolution'
http://www.manchester.ac.uk/press/title,36799,en.htm

Einstein's relativity theory proven with the 'lead' of a pencil
http://www.manchester.ac.uk/aboutus/news/pressreleases/einstein/

The School of Physics and Astronomy is part of the School of Engineering and Physical Sciences (EPS). For more information please see: http://www.manchester.ac.uk/eps

For more information, please click here

Contacts:
Alex Waddington

44-161-306-3983

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project