Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > First direct electric link between neurons and light-sensitive nanoparticle films created

Abstract:
The world's first direct electrical link between nerve cells and photovoltaic nanoparticle films has been achieved by researchers at the University of Texas Medical Branch at Galveston (UTMB) and the University of Michigan. The development opens the door to applying the unique properties of nanoparticles to a wide variety of light-stimulated nerve-signaling devices — including the possible development of a nanoparticle-based artificial retina.

First direct electric link between neurons and light-sensitive nanoparticle films created

GALVESTON, TX | Posted on February 27th, 2007

Nanoparticles are artificially created bits of matter not much bigger than individual atoms. Their behavior is controlled by the same forces that shape molecules; they also exhibit the bizarre effects associated with quantum mechanics. Scientists can exploit these characteristics to custom-build new materials "from the bottom up" with characteristics such as compatibility with living cells and the ability to turn light into tiny electrical currents that can produce responses in nerves.

That's what the UTMB and Michigan researchers did, using a process devised by Michigan chemical engineering professor Nicholas Kotov, one of the authors of a paper on the research appearing in the current issue of Nano Letters. The process starts with a glass plate and then builds a layer-by-layer sandwich of two kinds of ultra-thin films, one made of mercury-tellurium nanoparticles and another of a positively charged polymer called PDDA. The scientists then added a layer of ordinary clay and a cell-friendly coating of amino acid, and placed cultured neurons on the very top.

When light shines on them, the mercury-tellurium nanoparticle film layers produce electrons, which then move up into the PDDA film layers and produce an upward-moving electrical current. "As you build up the layers of this, you get better capabilities to absorb photons and generate voltage," said UTMB research scientist Todd Pappas, lead author on the Nano Letters paper. "When the current reaches the neuron membrane, it depolarizes the cell to the point where it fires, and you get a signal in the nerve."

Although light signals have previously been transmitted to nerve cells using silicon (whose ability to turn light into electricity is employed in solar cells and in the imaging sensors of video cameras), nanoengineered materials promise far greater efficiency and versatility.

"It should be possible for us to tune the electrical characteristics of these nanoparticle films to get properties like color sensitivity and differential stimulation, the sort of things you want if you're trying to make an artificial retina, which is one of the ultimate goals of this project," Pappas said. "You can't do that with silicon. Plus, silicon is a bulk material — silicon devices are much less size-compatible with cells."

The researchers caution that despite the great potential of a light-sensitive nanoparticle-neuron interface, creating an actual implantable artificial retina is a long-range project. But they're equally hopeful about a variety of other, less complex applications made possible by a tiny, versatile light-activated interface with nerve cells — such things as new ways to connect with artificial limbs and other prostheses, and revolutionary new tools for imaging, diagnosis and therapy.

"The beauty of this achievement is that these materials can be remotely activated without having to use wires to connect them. All you have to do is deliver light to the material," said Professor Massoud Motamedi, director of UTMB's Center for Biomedical Engineering and a co-author of the paper. "This type of technology has the ability to provide non-invasive connections between the human nervous system and prostheses and instruments that are unprecedented in their flexibility, compactness and reliability," Motamedi continued. "I feel that such nanotools are going to give the fields of medicine and biology brand-new capabilities that it's hard to even imagine now."

Other authors of the paper include University of Michigan graduate students W.M. Shan Wickramanayake and Edward Jan, as well as UTMB neuroscience and cell biology professor Malcolm Brodwick. The National Science Foundation provided funding for this research.

####

For more information, please click here

Contacts:
Jim Kelly

409-772-8791

Copyright © University of Texas Medical Branch at Galveston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Human Interest/Art

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project