Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Gutenberg + nanotechnology = printable electronics

February 26th, 2007

Gutenberg + nanotechnology = printable electronics

Abstract:
Nanoelectronics devices often are made by integrating dissimilar classes of semiconductors and various other disparate materials into one heterogeneous single system. The two primary modes of combining these materials - mechanical bonding and epitaxial growth processes - place stringent requirements on the ultimate scale or constituent materials of circuits. With mechanical bonding, there is a limited ability to scale to large areas (i.e., larger than the wafers) or to more than a few stacking layers; incompatibility with unusual materials (such as nanostructured materials) and/or low-temperature materials and substrates; challenging fabrication and alignment for the through-wafer electrical interconnects; demanding requirements for planar bonding surfaces; and bowing and cracking that can occur from mechanical strains generated by differential thermal expansion and contraction of disparate materials. Epitaxy avoids some of these problems but places severe restrictions on the quality and type of materials that can be grown. Using a process akin to the printing press, researchers have managed to bypass the need for epitaxial growth or wafer bonding to integrate wide ranging classes of dissimilar semiconducting nanomaterials onto substrates for the purpose of constructing heterogeneous, three dimensional electronics.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

GLOBALFOUNDRIES Offers New Low-Power 28nm Solution for High-Performance Mobile and IoT Applications: Technology is the first in the industry to provide design enablement support optimized to meet low power requirements of RF SoCs May 20th, 2015

Nanoelectronics

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project