Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Gutenberg + nanotechnology = printable electronics

February 26th, 2007

Gutenberg + nanotechnology = printable electronics

Abstract:
Nanoelectronics devices often are made by integrating dissimilar classes of semiconductors and various other disparate materials into one heterogeneous single system. The two primary modes of combining these materials - mechanical bonding and epitaxial growth processes - place stringent requirements on the ultimate scale or constituent materials of circuits. With mechanical bonding, there is a limited ability to scale to large areas (i.e., larger than the wafers) or to more than a few stacking layers; incompatibility with unusual materials (such as nanostructured materials) and/or low-temperature materials and substrates; challenging fabrication and alignment for the through-wafer electrical interconnects; demanding requirements for planar bonding surfaces; and bowing and cracking that can occur from mechanical strains generated by differential thermal expansion and contraction of disparate materials. Epitaxy avoids some of these problems but places severe restrictions on the quality and type of materials that can be grown. Using a process akin to the printing press, researchers have managed to bypass the need for epitaxial growth or wafer bonding to integrate wide ranging classes of dissimilar semiconducting nanomaterials onto substrates for the purpose of constructing heterogeneous, three dimensional electronics.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Nanoelectronics

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project