Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoengineering research at UH a magnet for defense department grant

Abstract:
Whether you're a soldier navigating a minefield or a doctor examining a tumor, how well you know the territory can make all the difference in the outcome.

Nanoengineering research at UH a magnet for defense department grant

HOUSTON, TX | Posted on February 5th, 2007

That's why military and medical personnel increasingly rely on magnetic field sensors to help map their respective terrains - and why the U.S. Department of Defense (DOD) has awarded a University of Houston researcher and his team a grant worth up to $1.6 million to build the most powerful magnetic field sensor to date.

Stanko Brankovic, an assistant professor of electrical and computer engineering with the Cullen College of Engineering at UH, and co-principle investigator Paul Ruchhoeft, also a UH assistant professor of electrical and computer engineering, will use the grant to create a new type of magnetic field sensor that, if successful, will be hundreds - perhaps thousands - of times more sensitive than anything currently available.

On the military front, hundreds of thousands or more of these sensors could be the key components in a low-cost system that maps minefields quickly and accurately. In the medical arena, the sensors could be applied to magnetic resonance imaging, yielding highly detailed images of, for example, a tumor or an injured knee.

The funding for the project, "Single Ferromagnetic Nanocontact-Based Devices as Magnetic Field Sensors," will be delivered in two stages. The first stage, valued at $100,000 for one year, requires a proof of concept, in which Brankovic and Ruchhoeft must construct a working sensor. To do this, they will utilize new ideas in the nanoengineering of novel materials and the development of nanofabrication processes for devices smaller than 10 nanometers.

Should they succeed, the DOD will consider awarding them an extra $1.5 million to complete an entire system that incorporates multiple sensors, data-transmission equipment, and equipment and software that translate data into an easily understandable format.

The team's sensors will be based upon the phenomenon known as "ballistic magnetoresistance," which is the effect of a magnetic field on the ability of electrons to flow between magnetic electrodes through a nanocontact - a tiny wire measuring billionths of a meter that forms naturally between magnetic electrodes.

If the two electrodes' magnetic orientations (the direction in which a material's magnetism pushes or pulls) are different, some of the electrons flowing between them will be repelled by the spot in the nanocontact where the two different magnetizations meet, Brankovic said.

"When exposed to a magnetic field, however, the resulting change in magnetic orientation of the electrodes affects electrons' ability to travel through the nanocontact," he said. "Depending on the size and material of the nanocontact and magnetization of the electrodes, the electrons will flow through either more or less easily."

This change can be measured by simple tools such as a voltmeter. On the bulk scale, magnetoresistance - the change in electrical resistance of a conductor when a magnetic field is applied - is only one factor in determining how easily electrons travel between electrodes. On the nanoscale, in which these magnetic field sensors will be constructed, magnetoresistance is the only cause of fluctuation in the flow of electrons.

The heart of Brankovic's system will consist of two magnetic electrodes, connected by a very small magnetic nanocontact. When exposed to a magnetic field, the flow of electrons through the nanocontact will change, yielding a measurable result.

Exactly how magnetoresistance works on this scale is unknown and will be one of the subjects of Brankovic's research. Two of the main theories to explain the phenomenon - both of which are supported by limited physical evidence - are incompatible. Brankovic has developed his own hypothesis that, if correct, would account for both sets of evidence.

"In my hypothesis, the nanocontact connecting the two electrodes is composed of non-conductive metal oxide that has metal channels that act as conductive pathways for electrons," Brankovic said. "When exposed to a magnetic field, some, but not all, of the channels of conductive material are altered either by the magnetic domain wall or by magnetostriction - the phenomena of a material's shape changing slightly when exposed to a magnetic field. Either of these explanations would result in a small but measurable change in the flow of electrons."

Whether this supposition proves correct or magnetic resistance on the nanoscale works in some other manner, Brankovic's goal will remain the same: to build a first-of-its kind magnetic field sensor that is far more powerful than any other sensor to date. If he succeeds, his invention will create a fundamental change in the arena of magnetic field detection.

####

About University of Houston
The University of Houston, Texas’ premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 35,000 students.

About the Cullen College of Engineering
UH Cullen College of Engineering has produced five U.S. astronauts, ten members of the National Academy of Engineering, and degree programs that have ranked in the top ten nationally. With more than 2,600 students, the college offers accredited undergraduate and graduate degrees in biomedical, chemical, civil and environmental, electrical and computer, industrial, and mechanical engineering. It also offers specialized programs in aerospace, materials, petroleum engineering and telecommunications.

For more information about UH, visit the university’s Newsroom at http://www.uh.edu/newsroom .

To receive UH science news via e-mail, visit www.uh.edu/admin/media/sciencelist.html .

For more information, please click here

Contacts:
Lisa Merkl
University of Houston
External Communication
713/743-8192 (office)
713/605-1757 (pager)

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Sensors

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project