Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoengineering research at UH a magnet for defense department grant

Abstract:
Whether you're a soldier navigating a minefield or a doctor examining a tumor, how well you know the territory can make all the difference in the outcome.

Nanoengineering research at UH a magnet for defense department grant

HOUSTON, TX | Posted on February 5th, 2007

That's why military and medical personnel increasingly rely on magnetic field sensors to help map their respective terrains - and why the U.S. Department of Defense (DOD) has awarded a University of Houston researcher and his team a grant worth up to $1.6 million to build the most powerful magnetic field sensor to date.

Stanko Brankovic, an assistant professor of electrical and computer engineering with the Cullen College of Engineering at UH, and co-principle investigator Paul Ruchhoeft, also a UH assistant professor of electrical and computer engineering, will use the grant to create a new type of magnetic field sensor that, if successful, will be hundreds - perhaps thousands - of times more sensitive than anything currently available.

On the military front, hundreds of thousands or more of these sensors could be the key components in a low-cost system that maps minefields quickly and accurately. In the medical arena, the sensors could be applied to magnetic resonance imaging, yielding highly detailed images of, for example, a tumor or an injured knee.

The funding for the project, "Single Ferromagnetic Nanocontact-Based Devices as Magnetic Field Sensors," will be delivered in two stages. The first stage, valued at $100,000 for one year, requires a proof of concept, in which Brankovic and Ruchhoeft must construct a working sensor. To do this, they will utilize new ideas in the nanoengineering of novel materials and the development of nanofabrication processes for devices smaller than 10 nanometers.

Should they succeed, the DOD will consider awarding them an extra $1.5 million to complete an entire system that incorporates multiple sensors, data-transmission equipment, and equipment and software that translate data into an easily understandable format.

The team's sensors will be based upon the phenomenon known as "ballistic magnetoresistance," which is the effect of a magnetic field on the ability of electrons to flow between magnetic electrodes through a nanocontact - a tiny wire measuring billionths of a meter that forms naturally between magnetic electrodes.

If the two electrodes' magnetic orientations (the direction in which a material's magnetism pushes or pulls) are different, some of the electrons flowing between them will be repelled by the spot in the nanocontact where the two different magnetizations meet, Brankovic said.

"When exposed to a magnetic field, however, the resulting change in magnetic orientation of the electrodes affects electrons' ability to travel through the nanocontact," he said. "Depending on the size and material of the nanocontact and magnetization of the electrodes, the electrons will flow through either more or less easily."

This change can be measured by simple tools such as a voltmeter. On the bulk scale, magnetoresistance - the change in electrical resistance of a conductor when a magnetic field is applied - is only one factor in determining how easily electrons travel between electrodes. On the nanoscale, in which these magnetic field sensors will be constructed, magnetoresistance is the only cause of fluctuation in the flow of electrons.

The heart of Brankovic's system will consist of two magnetic electrodes, connected by a very small magnetic nanocontact. When exposed to a magnetic field, the flow of electrons through the nanocontact will change, yielding a measurable result.

Exactly how magnetoresistance works on this scale is unknown and will be one of the subjects of Brankovic's research. Two of the main theories to explain the phenomenon - both of which are supported by limited physical evidence - are incompatible. Brankovic has developed his own hypothesis that, if correct, would account for both sets of evidence.

"In my hypothesis, the nanocontact connecting the two electrodes is composed of non-conductive metal oxide that has metal channels that act as conductive pathways for electrons," Brankovic said. "When exposed to a magnetic field, some, but not all, of the channels of conductive material are altered either by the magnetic domain wall or by magnetostriction - the phenomena of a material's shape changing slightly when exposed to a magnetic field. Either of these explanations would result in a small but measurable change in the flow of electrons."

Whether this supposition proves correct or magnetic resistance on the nanoscale works in some other manner, Brankovic's goal will remain the same: to build a first-of-its kind magnetic field sensor that is far more powerful than any other sensor to date. If he succeeds, his invention will create a fundamental change in the arena of magnetic field detection.

####

About University of Houston
The University of Houston, Texas’ premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 35,000 students.

About the Cullen College of Engineering
UH Cullen College of Engineering has produced five U.S. astronauts, ten members of the National Academy of Engineering, and degree programs that have ranked in the top ten nationally. With more than 2,600 students, the college offers accredited undergraduate and graduate degrees in biomedical, chemical, civil and environmental, electrical and computer, industrial, and mechanical engineering. It also offers specialized programs in aerospace, materials, petroleum engineering and telecommunications.

For more information about UH, visit the university’s Newsroom at http://www.uh.edu/newsroom .

To receive UH science news via e-mail, visit www.uh.edu/admin/media/sciencelist.html .

For more information, please click here

Contacts:
Lisa Merkl
University of Houston
External Communication
713/743-8192 (office)
713/605-1757 (pager)

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Sensors

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Military

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

New nanogel for drug delivery: Self-healing gel can be injected into the body and act as a long-term drug depot February 19th, 2015

Human Interest/Art

2015 Nanonics Image Contest January 29th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Oxford Instruments Asylum Research Announces AFM Image Contest Winners January 11th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE