Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Illinois Researchers Break Billion Variable Optimization Barrier

A paper published today in the journal Complexity describes how a team of researchers in the Illinois Genetic Algorithms Laboratory (IlliGAL) at the University of Illinois at Urbana-Champaign (UIUC) has achieved efficient, scalable solutions on difficult optimization problems containing over a billion variables. The team led by noted researcher and author David E. Goldberg used specially programmed genetic algorithms (GAs)--search procedures based on natural selection and genetics--to achieve the feat, together with theories of scalability and implementation techniques developed at Illinois. Optimization uses mathematics and computation to find efficient, effective solutions to problems in science, technology, and commerce, and it is widely used in scheduling, engineering design, and business management. Procedures in common use today are limited to thousands, sometimes millions, of variables because the most powerful methods become prohibitively expensive as the size of the problem increases. The Illinois result proves that billion-variable problems can be solved effectively and practically on existing computers with known procedures.

Illinois Researchers Break Billion Variable Optimization Barrier

Urbana, IL | Posted on January 19th, 2007

The calculations were performed on subsets of the 1536-processor Turing cluster housed in UIUC's Computational Science and Engineering (CSE) program. CSE director, Michael Heath, greeted the accomplishment. "This is exactly the kind of paradigm-breaking computational result that we hoped to enable in creating the Turing cluster." UIUC material scientist, Duane Johnson suggested that the result "is a milestone in the developing world of nanotechnology, enabling the analysis and design of new molecules in ways that were not previously possible," and John Deere emerging technology guru Bill Fulkerson sees the results as heralding a new day of complex systems optimization more generally. "Gone are the days of using a toy genetic algorithm to solve a toy problem. With petascale computing and solvers like this, complex systems optimization becomes possible."

Other team members included Kumara Sastry, a PhD candidate in Industrial and Enterprise Systems Engineering and Xavier Llora, a machine learning researcher at the National Center for Supercomputing Applications (NCSA). Although the team is pleased with the billion-variable result, it is not resting on its laurels. Sastry put it this way: "One reason this result is so interesting is because it is so general. With most optimization procedures you are stuck solving a limited class of problems. This result is immediately useful to a broad array of problems, and existing theory and technique tells us how to speed results on larger, harder problems that would otherwise be prohibitively expensive or impossible." Goldberg is excited by the array of existing application areas that can benefit from the result. "Genetic algorithms have been used regularly for two decades across the spectrum of human endeavor. Science, engineering, commerce, and even the humanities and the arts have already benefited from myriad applications of genetic algorithms. The billion-variable result can be put to use immediately across the panoply of existing and yet-to-be-imagined application domains." Complexity editor-in-chief, Alfred Hübler welcomed the research as "spectacular." "Goldberg's team has achieved something special. This result advances complexity science and technology immediately and noticeably."

The work was sponsored by the Air Force Office of Scientific Research and the NSF-sponsored Materials Computation Center (MCC) at the UIUC.

The article is available at .


About University of Illinois
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

University of Illinois

Copyright © PRWeb

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Preparing for Nano

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012


The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016


Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

Nanosciences: Genes on the rack October 21st, 2016

Physicists use lasers to capture first snapshots of rapid chemical bonds breaking October 21st, 2016

Nanoparticle vaccinates mice against dengue fever October 21st, 2016

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project