Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study: Repetitive Motion Speeds Nanoparticle Uptake

Abstract:
Newly published research by Rice University chemists and North Carolina State University toxicologists finds that repetitive movement can speed the uptake of nanoparticles through the skin. The research, which appears in the Jan. 10 issue of the American Chemical Society's journal Nano Letters, involved vitro experiments on animal skin that was exposed to buckyball-containing amino acids. Researchers found that the more the skin was flexed after exposure, the more buckyballs it took up and the deeper they penetrated.

Study: Repetitive Motion Speeds Nanoparticle Uptake

HOUSTON, TX | Posted on January 4th, 2007

Newly published research by Rice University chemists and North Carolina State University toxicologists finds that repetitive movement can speed the uptake of nanoparticles through the skin.

The research is based on in vitro experiments involving animal skin that was exposed to buckyball-containing amino acids. It appears in the Jan. 10 issue of the American Chemical Society's journal Nano Letters.

"Our results confirm that repetitive motion can speed the passage of nanoparticles through the skin," said Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State. "As more nanoparticles find their way into the workplace and consumer goods, and as scientists look for innovative ways to use nanoparticles to delivery drugs into the body, it
is critical that the nanoscience community identify these types of external exposure factors."

In the study, a solution of buckyball-containing amino acids were placed on small sections of pig skin. In some experiments, the skin was held still, and in others it was flexed for either an hour or an hour and a half. Measurements were taken eight hours after exposure and 24 hours after
exposure.

The team found that the more the skin was flexed, the more buckyballs it took up and the deeper they penetrated. Penetration was also found to be deeper after 24 hours than after just eight.

Buckyballs, are spherical, soccer-ball-shaped molecules containing 60 carbon atoms. The buckyballs used in the study were part of an innovative molecule called Bucky amino acid, or Baa, that was created in the lab of Rice chemist Andrew Barron. Baa is a marriage of buckyballs and phenylalanine, one of the 20 essential amino acids that are the building blocks of all proteins.

"The findings were a bit surprising because the Bucky amino acids tend to form spherical clusters that are up to 12 times larger in diameter than the known width of intercellular gaps in the skin," said Barron, the Charles W. Duncan Jr.-Welch Professor of Chemistry, professor of materials science and associate dean for industry interactions and technology transfer. "It's not clear why flexing increases the uptake of fullerene peptides, but it will be important to further investigate these mechanisms as we study the medical potential of Bucky amino acids."

Co-authors include NC State graduate student Jillian Rouse and Rice graduate student Jianzhong Yang.

The research was funded by the Environmental Protection Agency, the National Academies Keck Futures Initiative and the Welch Foundation.

####

About Rice University
About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Discoveries

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Announcements

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Safety-Nanoparticles/Risk management

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Human Interest/Art

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

UCLA nanoscientists engage shoppers in fun conversations March 8th, 2016

Risk Analysis Publishes Non-Animal Strategy to Assess Nanomaterials February 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic