Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study: Repetitive Motion Speeds Nanoparticle Uptake

Abstract:
Newly published research by Rice University chemists and North Carolina State University toxicologists finds that repetitive movement can speed the uptake of nanoparticles through the skin. The research, which appears in the Jan. 10 issue of the American Chemical Society's journal Nano Letters, involved vitro experiments on animal skin that was exposed to buckyball-containing amino acids. Researchers found that the more the skin was flexed after exposure, the more buckyballs it took up and the deeper they penetrated.

Study: Repetitive Motion Speeds Nanoparticle Uptake

HOUSTON, TX | Posted on January 4th, 2007

Newly published research by Rice University chemists and North Carolina State University toxicologists finds that repetitive movement can speed the uptake of nanoparticles through the skin.

The research is based on in vitro experiments involving animal skin that was exposed to buckyball-containing amino acids. It appears in the Jan. 10 issue of the American Chemical Society's journal Nano Letters.

"Our results confirm that repetitive motion can speed the passage of nanoparticles through the skin," said Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State. "As more nanoparticles find their way into the workplace and consumer goods, and as scientists look for innovative ways to use nanoparticles to delivery drugs into the body, it
is critical that the nanoscience community identify these types of external exposure factors."

In the study, a solution of buckyball-containing amino acids were placed on small sections of pig skin. In some experiments, the skin was held still, and in others it was flexed for either an hour or an hour and a half. Measurements were taken eight hours after exposure and 24 hours after
exposure.

The team found that the more the skin was flexed, the more buckyballs it took up and the deeper they penetrated. Penetration was also found to be deeper after 24 hours than after just eight.

Buckyballs, are spherical, soccer-ball-shaped molecules containing 60 carbon atoms. The buckyballs used in the study were part of an innovative molecule called Bucky amino acid, or Baa, that was created in the lab of Rice chemist Andrew Barron. Baa is a marriage of buckyballs and phenylalanine, one of the 20 essential amino acids that are the building blocks of all proteins.

"The findings were a bit surprising because the Bucky amino acids tend to form spherical clusters that are up to 12 times larger in diameter than the known width of intercellular gaps in the skin," said Barron, the Charles W. Duncan Jr.-Welch Professor of Chemistry, professor of materials science and associate dean for industry interactions and technology transfer. "It's not clear why flexing increases the uptake of fullerene peptides, but it will be important to further investigate these mechanisms as we study the medical potential of Bucky amino acids."

Co-authors include NC State graduate student Jillian Rouse and Rice graduate student Jianzhong Yang.

The research was funded by the Environmental Protection Agency, the National Academies Keck Futures Initiative and the Welch Foundation.

####

About Rice University
About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Safety-Nanoparticles/Risk management

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic