Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A nano design adjustment may help find, clear some water

Abstract:
Experiments designed to test discrepancies in theoretical computational chemistry have turned up a
barely two-angstrom difference that may lead to a new approach to locate and remove dangerous toxins such as perchlorate and nitrates from the environment.

A nano design adjustment may help find, clear some water

Eugene, OR | Posted on December 14th, 2006

The research targets toxic groundwater contaminants that contain negatively charged ions known as anions (a-NI-ens), which are historically difficult to remove. Perchlorate, a rocket fuel additive recently linked to thyroid deficiency in women, has contaminated more than 450 wells in California alone. Nitrate contamination, which results mainly from the use of nitrogen fertilizer, is a leading cause of shutdowns of wells and public water supplies in the United States.

"There is a need for improved materials that are effective at removing anions from the environment," said Darren W. Johnson, a University of Oregon chemist and co-principal investigator of a study appearing online ahead of regular publication in the Journal of the American Chemical Society. "A current leading strategy is anion exchange, which uses a polymeric resin to exchange an anion for one that's not a problem." (Two other currently used methods aimed at anions are biochemical
denitrification and reverse osmosis.)

In the new study, led by UO doctoral student Orion B. Berryman, researchers focused on anion-pi interaction, in which a negatively charged species is attracted to a neutral electron-deficient aromatic ring, which could be incorporated into a specifically designed receptor.


Anion-pi interactions have been the focus of recent theoretical work, in which electronic structure calculations predicted that anion binding between halides and electron-deficient aromatic rings will occur over the center of a ring. However, the lab experiments on crystalline material found that the binding occurs as much as 2 angstroms, or 0.2 nanometers from the center.

"It's very important to consider these off-centered anion-interactions occurring through a charge-transfer interaction," Berryman said. "We looked at solid-state structures and the geometry of the interaction involved in a simple system. In these initial studies we noted significant color changes due to this off-center binding geometry found in the crystal structures."

Co-principal investigator Benjamin P. Hay, a chemist at the Pacific Northwest National Laboratory in Richland, Wash., where Berryman studied last fall as part of UO's National Science Foundation-funded internship program, said the study has important ramifications in anionophore design, crystal engineering and other aspects of supramolecular chemistry. In fact, he said, the findings indicate that prior designs may be flawed, incomplete or even misleading. "We discovered an unexpected bonding motif that involves the transfer of charge from the anion to the arene - in other words, a covalent bonding motif," Hay said. "This is the first theoretical characterization of what we have
termed an off-center, weak charge-transfer interaction."

Anions, of which notable examples include DNA, nitrate, pertechnetate, cyanide and chromate, play indispensable roles in biological and chemical processes, but they also can contribute significantly to environmental pollution that threatens aquatic life cycles and human health.

Johnson, in collaboration with UO chemist Michael M. Haley, now is seeking to design receptors that aim to the off-center location, with a goal of developing sensors for anion detection. Because Berryman's research produced sometimes intense color changes at binding sites, such an approach could lead to developing materials that sense the presenceof these toxins and remediate them.

While 0.2 nanometers seems an insignificant distance, it could mean there's a 100 percent chance that binding cannot occur, Johnson said. "We're finding that from a design standpoint, that 0.2 nanometers is a big difference."

He noted that estimating or calculating the binding distances when optimizing a receptor for positively charged binding, or cation, such as the chelation of metals by EDTA (ethylenedinitrilotetraacetic acid), is done almost exactly - to a resolution of at least 0.1 angstroms (0.01 nanometers). EDTA is widely used in industrial cleaners, detergents and
textile production.

####

About Univeristy of Oregon News
Johnson and Hay are members of the Oregon Nanoscience and Microtechnologies Institute (ONAMI). Johnson also is a member of the UO Materials Science Institute. Other coauthors with them and Berryman were Vyacheslav S. Bryantsev of the Pacific Northwest National Laboratory and David P. Stay, a UO doctoral student in chemistry.

Funding included an NSF Integrative Graduate Education and Research Traineeship to Berryman. Johnson is a 2006 Cottrell Scholar of the Research Corp. and holder of an NSF Career Award. Additional support for equipment and research was supplied by the NSF to the University of Oregon and by the U.S. Department of Energy to Berryman and Hay.

For more information, please click here

Contacts:
Jim Barlow, 541-346-3481

Copyright © Univeristy of Oregon News

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Pacific Northwest National Laboratory

Image

Related News Press

Discoveries

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Water

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Highly efficient heavy metal ions filter January 25th, 2016

Louisiana Tech University student coauthors research in ACS journal January 15th, 2016

Coated Magnetic Nanoparticles Used to Purify Contaminated Water December 28th, 2015

Human Interest/Art

Rice to enter first international nanocar race: Five teams will participate in October 2016 event in France December 15th, 2015

Bionic liver micro-organs explain off-target toxicity of acetaminophen (Tylenol): Israeli-German partnership aims to replace animal experiments with advanced liver-on-chip devices August 17th, 2015

Omni Nano and Time Warner Cable Partner to Provide Nanotechnology Education to the Boys & Girls Clubs of Los Angeles: A $10,000 Donation to Benefit Youth of Los Angeles County's Boys & Girls Clubs August 4th, 2015

Kalam: versatility personified August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic