Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ben-Gurion University scientist solves nanoelectronics puzzle

Abstract:
Ben-Gurion University of the Negev's theoretical physicist, Professor Yigal Meir has solved one of nanoelectronic's most longstanding puzzles, which has baffled physicists seeking to make smaller, faster computer devices for more than a decade.

Ben-Gurion University scientist solves longstanding nanoelectronics puzzles

Beer-Sheva, Israel | Posted on October 05, 2006

Ben-Gurion University of the Negev's theoretical physicist, Professor Yigal Meir has solved one of nanoelectronic's most longstanding puzzles, which has baffled physicists seeking to make smaller, faster computer devices for more than a decade.

Nanoelectronics refers to electronic transport through miniaturized devices. The simplest such device, and the basic building block for more complicated devices, is a quantum point contact, a constriction connecting large electron reservoirs.

In a paper published in Nature Magazine, the professor explains the 0.7 anomaly, a feature in the conductance of quantum point contacts that has so far eluded explanation for almost 20 years.

According to quantum mechanics, and the wavelike nature of electrons, scientists expected the conductance through such a device to increase as the gap grew bigger by integer steps of universal value. While this was indeed found true in early experiments, surprisingly, an additional first step, approximately 0.7 times the expected universal value had also been observed, which scientists first attributed to irregularities in the device (the 0.7 anomaly as it became known).

While visiting Princeton University, Meir and a colleague, Ned Wingreen, theorized the existence of a magnetic impurity, a localized electron, in a quantum-point contact to explain the 0.7 anomaly. While their theoretical calculations explained its temperature and magnetic-field dependence, they still needed to identify the proposed impurity to overcome physics community skeptics about how a magnetic moment could form in such a system. The classical analogy of a quantum point contact is a sea of electrons around a hill, Meir explains. The existence of a magnetic impurity on the point of contact is equivalent to the formation of a puddle of water at the top of the hill, a counterintuitive phenomenon.

In the Nature paper published with his Ben-Gurion University postdoc, Dr. Tomaz Rejec, Meir explains, via extensive numerical calculations, that the existence of a magnetic impurity at the quantum point of contact is possible because a lower density of the electrons near the quantum point attracts the other electrons toward the point. The wavy nature of such electrons then causes the quantum point to form ripples, trapping an electron and causing the 0.7 anomaly.

This is both good and bad news for quantum computer devices based on quantum dots which require that no outside factors affect the circuits, Meir concludes. Magnetic impurities at point contacts would render such computer devices inoperable. However, the magnetic impurity is formed only when conductance through the point of contact is around 0.7, so setting the conductance of each contact below that value should allow a circuit formed by quantum dots to function.

####

About Ben-Gurion University of the Negev:
Ben-Gurion University of the Negev is more than a world-renowned institute of research and higher learning. BGU builds bridges of peace between Israel and it neighbors through cooperation in science, research and development. It is the link between academia and industry, Israel and the developing world. BGU is a university with a conscience, where the highest academic and scientific standards are integrated with community involvement, and where the dream of Israels first Prime Minister, David Ben-Gurion, to make the desert bloom is fulfilled.

For more information, please click here

About American Associates, Ben-Gurion University of the Negev:
Founded in 1972, AABGU is a partner in the University's mission to develop the Negev and build a world-class institution of research and education in the desert. A nonprofit organization with its national headquarters in New York City and 10 regional offices throughout the United States, AABGU plays a vital role in helping BGU fulfill its unique responsibility to develop the bold new vision for the Negev, the focus of the future of Israel and the world.

For more information, please click here

Contact:
Andrew Lavin
andrewlavin@alavin.com

Copyright Ben-Gurion University of the Negev

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Computing

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Microsoft, Purdue collaborate to advance quantum computing May 30th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Nanoelectronics

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Discoveries

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Announcements

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project