Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ben-Gurion University scientist solves nanoelectronics puzzle

Abstract:
Ben-Gurion University of the Negev's theoretical physicist, Professor Yigal Meir has solved one of nanoelectronic's most longstanding puzzles, which has baffled physicists seeking to make smaller, faster computer devices for more than a decade.

Ben-Gurion University scientist solves longstanding nanoelectronics puzzles

Beer-Sheva, Israel | Posted on October 05, 2006

Ben-Gurion University of the Negev's theoretical physicist, Professor Yigal Meir has solved one of nanoelectronic's most longstanding puzzles, which has baffled physicists seeking to make smaller, faster computer devices for more than a decade.

Nanoelectronics refers to electronic transport through miniaturized devices. The simplest such device, and the basic building block for more complicated devices, is a quantum point contact, a constriction connecting large electron reservoirs.

In a paper published in Nature Magazine, the professor explains the 0.7 anomaly, a feature in the conductance of quantum point contacts that has so far eluded explanation for almost 20 years.

According to quantum mechanics, and the wavelike nature of electrons, scientists expected the conductance through such a device to increase as the gap grew bigger by integer steps of universal value. While this was indeed found true in early experiments, surprisingly, an additional first step, approximately 0.7 times the expected universal value had also been observed, which scientists first attributed to irregularities in the device (the 0.7 anomaly as it became known).

While visiting Princeton University, Meir and a colleague, Ned Wingreen, theorized the existence of a magnetic impurity, a localized electron, in a quantum-point contact to explain the 0.7 anomaly. While their theoretical calculations explained its temperature and magnetic-field dependence, they still needed to identify the proposed impurity to overcome physics community skeptics about how a magnetic moment could form in such a system. The classical analogy of a quantum point contact is a sea of electrons around a hill, Meir explains. The existence of a magnetic impurity on the point of contact is equivalent to the formation of a puddle of water at the top of the hill, a counterintuitive phenomenon.

In the Nature paper published with his Ben-Gurion University postdoc, Dr. Tomaz Rejec, Meir explains, via extensive numerical calculations, that the existence of a magnetic impurity at the quantum point of contact is possible because a lower density of the electrons near the quantum point attracts the other electrons toward the point. The wavy nature of such electrons then causes the quantum point to form ripples, trapping an electron and causing the 0.7 anomaly.

This is both good and bad news for quantum computer devices based on quantum dots which require that no outside factors affect the circuits, Meir concludes. Magnetic impurities at point contacts would render such computer devices inoperable. However, the magnetic impurity is formed only when conductance through the point of contact is around 0.7, so setting the conductance of each contact below that value should allow a circuit formed by quantum dots to function.

####

About Ben-Gurion University of the Negev:
Ben-Gurion University of the Negev is more than a world-renowned institute of research and higher learning. BGU builds bridges of peace between Israel and it neighbors through cooperation in science, research and development. It is the link between academia and industry, Israel and the developing world. BGU is a university with a conscience, where the highest academic and scientific standards are integrated with community involvement, and where the dream of Israelís first Prime Minister, David Ben-Gurion, to make the desert bloom is fulfilled.

For more information, please click here

About American Associates, Ben-Gurion University of the Negev:
Founded in 1972, AABGU is a partner in the University's mission to develop the Negev and build a world-class institution of research and education in the desert. A nonprofit organization with its national headquarters in New York City and 10 regional offices throughout the United States, AABGU plays a vital role in helping BGU fulfill its unique responsibility to develop the bold new vision for the Negev, the focus of the future of Israel and the world.

For more information, please click here

Contact:
Andrew Lavin
andrewlavin@alavin.com

Copyright © Ben-Gurion University of the Negev

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Computing

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Noise in a microwave amplifier is limited by quantum particles of heat November 10th, 2014

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Nanoelectronics

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE