Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Liquid Armor

July 21st, 2006

Liquid Armor

A new "liquid armor" could be the solution for protecting the parts of the body that aren't currently covered by standard-issue ballistic vests arms and legs, where many of these devastating and life-threatening injuries occur. Co-developed by two research teams one led by Norman Wagner at the University of Delaware, and the other led by Eric Wetzel at the U.S. Army Research Lab in Aberdeen, MD the liquid technology will soon lead to light, flexible full-body armor.

The liquid - called shear thickening fluid is actually a mixture of hard nanoparticles and nonevaporating liquid. It flows normally under low-energy conditions, but when agitated or hit with an impact it stiffens and behaves like a solid. This temporary stiffening occurs less than a millisecond after impact, and is caused by the nanoparticles forming tiny clusters inside the fluid. (with Video)


Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Metamaterial device allows chameleon-like behavior in the infrared October 28th, 2016

KaSAM-2016: International Conference on Material Sciences has successfully concluded in Pokhara of Western Nepal October 24th, 2016

Move over, solar: The next big renewable energy source could be at our feet October 20th, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016


Metamaterial device allows chameleon-like behavior in the infrared October 28th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

The molecular mechanism that blocks membrane receptors has been identified: The work in which the Ikerbasque researcher of the Biofisika Institute Xabier Contreras has participated has been published in the journal Cell October 27th, 2016

Imaging where cancer drugs go in the body could improve treatment October 26th, 2016


Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

New perovskite solar cell design could outperform existing commercial technologies: Stanford, Oxford team creates high-efficiency tandem cells October 21st, 2016

Study explains strength gap between graphene, carbon fiber: Rice University researchers simulate defects in popular fiber, suggest ways to improve it October 19th, 2016

Study finds surface texture of gallium nitride affects cell behavior October 17th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project