Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotubes act as 'thermal velcro'

Nanotubes act as 'thermal velcro' to reduce computer-chip heating

West Lafayette, IN | Posted on May 01, 2006

Engineers have created carpets made of tiny cylinders called carbon nanotubes to enhance the flow of heat at a critical point where computer chips connect to cooling devices called heat sinks, promising to help keep future chips from overheating.

Researchers are trying to develop new types of "thermal interface materials" that conduct heat more efficiently than conventional materials, improving overall performance and helping to meet cooling needs of future chips that will produce more heat than current microprocessors. The materials, which are sandwiched between silicon chips and the metal heat sinks, fill gaps and irregularities between the chip and metal surfaces to enhance heat flow between the two.

Purdue University researchers have made several new thermal interface materials with carbon nanotubes, including a Velcro-like nanocarpet. "The bottom line is the performance that we see with nanotubes is significantly better than comparable state-of-the-art commercial materials," said Timothy Fisher, an associate professor of mechanical engineering who is leading the research. "Carbon nanotubes have excellent heat-conduction properties, and our ability to fabricate them in a controlled manner has been instrumental in realizing this application."

Recent findings have shown that the nanotube-based interfaces can conduct several times more heat than conventional thermal interface materials at the same temperatures. The nanocarpet, called a "carbon nanotube array thermal interface," can be attached to both the chip and heat sink surfaces.

"We say it's like Velcro because it creates an interwoven mesh of fibers when both sides of the interface are coated with nanotubes," Fisher said. "We don't mean that it creates a strong mechanical bond, but the two pieces come together in such a way that they facilitate heat flow, becoming the thermal equivalent of Velcro. In some cases, using a combination of nanotube material and traditional interface materials also shows a strong synergistic effect."

Findings related to the combination of carbon nanotubes and traditional interface materials are detailed in a paper appearing in the May issue of the International Journal of Heat and Mass Transfer. The paper was written by mechanical engineering doctoral student Jun Xu and Fisher.

Heat is generated at various points within the intricate circuitry of computer chips and at locations where chips connect to other parts. As heat flows through conventional thermal interface materials, the temperature rises about 15 degrees Celsius, whereas the nanotube array material causes a rise of about 5 degrees or less.

It will be necessary to find more efficient thermal interface materials in the future because as computer chips become increasingly more compact, more circuitry will be patterned onto a smaller area, producing additional heat. Excess heat reduces the performance of computer chips and can ultimately destroy the delicate circuits.

The nanotubes range in diameter from less than one nanometer to about 100 nanometers. A nanometer is a billionth of a meter, or about the distance of 10 atoms strung together.

The nanotube carpets also might have military and other commercial applications for cooling "power electronics," which are systems that control and convert the flow of electrical power so that it can be used for various purposes on an aircraft, ship or vehicle.

The research has been funded by Purdue's Cooling Technologies Research Center, supported by the National Science Foundation, industry and Purdue to help corporations develop miniature cooling technologies for a wide range of applications, from electronics and computers to telecommunications and advanced aircraft. Applications in power electronics are being supported by the Air Force Research Laboratory in association with the Birck Nanotechnology Center at Purdue's Discovery Park.

The technology is ready for commercialization and is being pursued by several corporate members of the cooling research center, including Nanoconduction Inc., a startup company in Sunnyvale, Calif., which is a new member of the cooling center.

####


Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source Timothy Fisher, (765) 494-5627, tsfisher@purdue.edu

Related Web site:
Timothy Fisher: tools.ecn.purdue.edu/ME/Fac_Staff/fisher.whtml

Note to Journalists: An electronic copy of the research paper is available from Emil Venere, (765) 494-4709, venere@purdue.edu

ABSTRACT
Enhancement of thermal interface materials with carbon

Jun Xu, Timothy S. Fisher

This paper describes an experimental study of thermal contact conductance enhancement enabled by carbon nanotube (CNT) arrays synthesized directly on silicon wafers using plasma-enhanced chemical vapor deposition. Testing based on the one-dimensional reference bar method occurred in a high-vacuum environment with radiation shielding, and temperature measurements were made with an infrared camera. Results from other thermal interface materials are presented, as well as combinations of these materials with CNT arrays. Dry CNT arrays produce a minimum thermal interface resistance of 19.8 mm2 K/ W, while the combination of a CNT array and a phase change material produces a minimum resistance of 5.2 mm2 K/W.Text of abstract, with leading set at 14 points, so it doesn't take as much room.

Contact:
Purdue University
News Service
400 Centennial Mall Drive, Rm. 324
West Lafayette, IN 47907-2016
(765) 494-2096
fax: (765) 494-0401
purduenews@purdue.edu

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows – and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Chip Technology

Graphene grows – and we can see it March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Nanotubes/Buckyballs/Fullerenes/Nanorods

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Nanoelectronics

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Announcements

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023

Military

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Scientists boost quantum signals while reducing noise: “Squeezing” noise over a broad frequency bandwidth in a quantum system could lead to faster and more accurate quantum measurements February 10th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project