Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Good Memory

Abstract:
On the way to plastic electronics: polymer-based dynamic random access memory (DRAM)

Good Memory

Posted on April 14, 2006

Smaller, lighter, more compact devices that can do more and more, work faster, and juggle more data—these demands are pushing conventional semiconductor technology up against its limits. In the future, plastics will have to take over. A number of polymeric electronic components have already been made. Researchers at the National University of Singapore and the Institute of Microelectronics in Singapore have now successfully produced DRAM storage based on a plastic.

The Singaporean team also recently made flash memory (a rewritable memory) and write-once read-many-times (WORM) memory based on polymers. Now they have introduced another type of memory, dynamic random access memory (DRAM), based on a polymer. In this “short-term” or “dynamic” memory, electronic devices temporarily store all processes—storage units are updated by refreshing voltage pulses.

In contrast to a semiconductor chip, which “keeps track” of data in the form of electrical charge, the “0” and “1” signals in polymer-based memory are stored as high and low conductivity, respectively. The researchers produced a special copolymer, a plastic whose long molecular chains are made of two different components that are finely tuned to each other. This polymer is embedded as a thin film between two electrodes. The polymer is initially in the OFF state, which is characterized by low conductivity. A barrier hinders the flow of electrons through the film. In order to “write” to the memory, a low voltage above a certain threshold (-2.8 V) is enough to switch the copolymer into a highly conducting state, the ON state. The memory is “read” by means of voltage pulses below the threshold. The secret behind this device is the combination of the barrier and a kind of “pit trap” for charge carriers. If the barrier is first overcome above the threshold, the pits are filled with charge carriers. The altered electrical field then causes the barrier to become ineffective. The current can then flow through the film unhindered. The pits are “shallow”, which allows the charge carriers to come out easily: If no voltage is applied for over two minutes they “climb” out of the pits on their own and the memory “forgets” its programming and returns to the OFF state. This is just what it should do as “dynamic” memory. “Erasing” the memory is accomplished by an opposing voltage pulse above +3.5 V. This immediately returns the memory to the original OFF state with empty traps. Renewed application of more than -2.8 V always returns the memory to its writeable state.

####


Author: En-Tang Kang, National University of Singapore (Singapore), www.chee.nus.edu.sg/staff/kang.html

Title: A Dynamic Random Access Memory (DRAM) Based on a Conjugated Copolymer Containing Electron-Donor and -Acceptor Moieties

Angewandte Chemie International Edition, 2006, 45, No. 18, 2947–2951, doi: 10.1002/anie.200504365

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project