Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Good Memory

Abstract:
On the way to plastic electronics: polymer-based dynamic random access memory (DRAM)

Good Memory

Posted on April 14, 2006

Smaller, lighter, more compact devices that can do more and more, work faster, and juggle more data—these demands are pushing conventional semiconductor technology up against its limits. In the future, plastics will have to take over. A number of polymeric electronic components have already been made. Researchers at the National University of Singapore and the Institute of Microelectronics in Singapore have now successfully produced DRAM storage based on a plastic.

The Singaporean team also recently made flash memory (a rewritable memory) and write-once read-many-times (WORM) memory based on polymers. Now they have introduced another type of memory, dynamic random access memory (DRAM), based on a polymer. In this “short-term” or “dynamic” memory, electronic devices temporarily store all processes—storage units are updated by refreshing voltage pulses.

In contrast to a semiconductor chip, which “keeps track” of data in the form of electrical charge, the “0” and “1” signals in polymer-based memory are stored as high and low conductivity, respectively. The researchers produced a special copolymer, a plastic whose long molecular chains are made of two different components that are finely tuned to each other. This polymer is embedded as a thin film between two electrodes. The polymer is initially in the OFF state, which is characterized by low conductivity. A barrier hinders the flow of electrons through the film. In order to “write” to the memory, a low voltage above a certain threshold (-2.8 V) is enough to switch the copolymer into a highly conducting state, the ON state. The memory is “read” by means of voltage pulses below the threshold. The secret behind this device is the combination of the barrier and a kind of “pit trap” for charge carriers. If the barrier is first overcome above the threshold, the pits are filled with charge carriers. The altered electrical field then causes the barrier to become ineffective. The current can then flow through the film unhindered. The pits are “shallow”, which allows the charge carriers to come out easily: If no voltage is applied for over two minutes they “climb” out of the pits on their own and the memory “forgets” its programming and returns to the OFF state. This is just what it should do as “dynamic” memory. “Erasing” the memory is accomplished by an opposing voltage pulse above +3.5 V. This immediately returns the memory to the original OFF state with empty traps. Renewed application of more than -2.8 V always returns the memory to its writeable state.

####


Author: En-Tang Kang, National University of Singapore (Singapore), www.chee.nus.edu.sg/staff/kang.html

Title: A Dynamic Random Access Memory (DRAM) Based on a Conjugated Copolymer Containing Electron-Donor and -Acceptor Moieties

Angewandte Chemie International Edition, 2006, 45, No. 18, 2947–2951, doi: 10.1002/anie.200504365

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Memory Technology

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Materials/Metamaterials

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project