Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Good Memory

Abstract:
On the way to plastic electronics: polymer-based dynamic random access memory (DRAM)

Good Memory

Posted on April 14, 2006

Smaller, lighter, more compact devices that can do more and more, work faster, and juggle more data—these demands are pushing conventional semiconductor technology up against its limits. In the future, plastics will have to take over. A number of polymeric electronic components have already been made. Researchers at the National University of Singapore and the Institute of Microelectronics in Singapore have now successfully produced DRAM storage based on a plastic.

The Singaporean team also recently made flash memory (a rewritable memory) and write-once read-many-times (WORM) memory based on polymers. Now they have introduced another type of memory, dynamic random access memory (DRAM), based on a polymer. In this “short-term” or “dynamic” memory, electronic devices temporarily store all processes—storage units are updated by refreshing voltage pulses.

In contrast to a semiconductor chip, which “keeps track” of data in the form of electrical charge, the “0” and “1” signals in polymer-based memory are stored as high and low conductivity, respectively. The researchers produced a special copolymer, a plastic whose long molecular chains are made of two different components that are finely tuned to each other. This polymer is embedded as a thin film between two electrodes. The polymer is initially in the OFF state, which is characterized by low conductivity. A barrier hinders the flow of electrons through the film. In order to “write” to the memory, a low voltage above a certain threshold (-2.8 V) is enough to switch the copolymer into a highly conducting state, the ON state. The memory is “read” by means of voltage pulses below the threshold. The secret behind this device is the combination of the barrier and a kind of “pit trap” for charge carriers. If the barrier is first overcome above the threshold, the pits are filled with charge carriers. The altered electrical field then causes the barrier to become ineffective. The current can then flow through the film unhindered. The pits are “shallow”, which allows the charge carriers to come out easily: If no voltage is applied for over two minutes they “climb” out of the pits on their own and the memory “forgets” its programming and returns to the OFF state. This is just what it should do as “dynamic” memory. “Erasing” the memory is accomplished by an opposing voltage pulse above +3.5 V. This immediately returns the memory to the original OFF state with empty traps. Renewed application of more than -2.8 V always returns the memory to its writeable state.

####


Author: En-Tang Kang, National University of Singapore (Singapore), www.chee.nus.edu.sg/staff/kang.html

Title: A Dynamic Random Access Memory (DRAM) Based on a Conjugated Copolymer Containing Electron-Donor and -Acceptor Moieties

Angewandte Chemie International Edition, 2006, 45, No. 18, 2947–2951, doi: 10.1002/anie.200504365

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Memory Technology

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

First principles approach to creating new materials: Solid-state chemistry and theoretical physics combined to help discover new materials with useful properties April 8th, 2014

Domain walls in nanowires cleverly set in motion: Important prerequisite for the development of nano-components for data storage and sensor technology / Publication in Nature Communications April 8th, 2014

Materials/Metamaterials

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Announcements

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE