Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hard Shell – Soft Core

Abstract:
Polymeric microspheres have a shell whose density is dependent on the temperature

Hard Shell – Soft Core

Posted on March 01, 2006

Nanoparticles whose outer shells and inner cores are made of different materials are useful for many industrial and biomedical applications. In order for nanoparticles to be used as sensors or for the controlled release of substances held within their shell, for example, an important requirement must be met: the shell must be more dense than the core to form a barrier for the external medium.

W. Richtering and I. Berndt in Aachen, in collaboration with J.S. Pedersen in Århus, Denmark, have now found an elegant solution to this problem. In a two-step process, they synthesized polymeric microspheres with a core made of poly-N-isopropylacrylamide and a shell of poly-N-isopropylmethacrylamide. Both polymers are known for a particular characteristic: they swell in water, forming microgels. Because of the different polymer building blocks used in the shell and core, these differ in the absorption of water.

At 70 °C, the temperature at which the microspheres are synthesized, both polymers are densely packed. They cannot take up much water and thus no substances dissolved in the water either. When they are cooled to 25 °C, the core and shell have the highest water content and the lowest density. Dissolved molecules can pass through the shell into the core, where they disperse. Things get especially interesting when the temperature is raised to 39 °C: at this temperature, only the swelling properties of the shell are changed. It expels water, shrinks together, and becomes denser than the core. Substances dissolved in the core can no longer pass through the shell and are now locked inside. Aside from their sensitivity to temperature, polymeric microgels with core–shell architectures have another advantage too. Selection of the basic components and the reaction conditions also allow other properties of the polymers to be controlled. In addition, the synthesis of particles with multiple shells is also a possibility; these could separate different reaction chambers within the particle. The possible applications are many and varied.

####


Author: Walter Richtering, RWTH Aachen (Germany), www.ipc.rwth-aachen.de/richtering/index.html

Title: Temperature-Sensitive Core–Shell Microgel Particles with Dense Shell

Angewandte Chemie International Edition, 2006, 45, 1737, doi: 10.1002/anie.200503888

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Materials/Metamaterials

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Carbon displays quantum effects July 13th, 2017

Announcements

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project