Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > VT scientists develop process for creating biocompatible fibers

Virginia Tech scientists develop process for creating biocompatible fibers

Blacksburg, VA | Posted on January 24, 2006

Scientists at Virginia Tech have developed a single-step process for creating nonwoven fibrous mats from a small organic molecule - creating a new nanoscale material with potential applications where biocompatible materials are required, such as scaffolds for tissue growth and drug delivery.

The research was presented in the Jan. 20 issue of Science, in the article, "Phospholipid Nonwoven Electrospun Membranes," by Matthew G. McKee, a recent Ph.D. graduate in chemical engineering from Virginia Tech's College of Engineering, now at P&G, current chemistry students John M. Layman and Matthew P. Cashion, and chemistry professor Timothy E. Long, all at Virginia Tech's College of Science.

"Phospholipids, which are the main component of cell membranes in the human body or in an apple are exquisite in terms of their ability to self-organize," said Long.

The researchers fabricated this natural compound into a sub micron fiber - 100 times smaller than a human hair. "It is the first demonstration that electrostatic spinning, or electrospinning, a polymer processing technique, can be used with a small molecule to produce a fiber. "Clothing fibers such as polyesters and nylons are composed of large molecules, macromolecules," Long said. "Now, we are fabricating fibers from small molecules - ones with a low molecular weight."

Under the microscope, the resulting mat shows a porous nonwoven structure.

The researchers used a commercial product, lecithin, a natural mixture of phospholipids and neutral lipids. The materials will spontaneously organize into cylindrical or worm-like strands to form membranes.

McKee studied this self-assembly and conducted rheological experiments to fundamentally understand the association of small molecules, then he determined that once phospholipids form an entangled network they can be treated similarly to higher weight molecules and electrospun. The size of the mats is limited only by the amount of material, such as lecithin.

"This represents the synergy of electrospinning, the use of self-organizing molecules, and fundamental research to understand the behavior of such molecules," Long said. "Matt (McKee) did a terrific job of bringing fundamental learning to a potentially new family of fabrics and membranes."

Long said that the future opportunities are vast. "Our research group continues to fabricate molecules that self organize and can be electrospun. Potential applications include drug delivery, that is, a carrier and matrix to control the release of drugs."

Long's research group is working with Virginia-Maryland Regional College of Veterinary Medicine researchers at Virginia Tech to develop a patch for drug delivery for horses. "We have not yet tested the specific biocompatibility (cytotoxicity) of our fibers, but we have not changed the chemical structure of the phospholipids."

The research is part of the Army Research Office Multidisciplinary University Research Initiative (MURI), which brings together chemistry, mechanical engineering, electrical engineering, chemical engineering, and materials science researchers to accelerate discoveries in nanostructured materials.

####
Media Contact:
Susan Trulove
540-231-5646
STrulove@vt.edu

Copyright Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Researchers find new way to control light with electric fields May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Materials/Metamaterials

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project