Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > VT scientists develop process for creating biocompatible fibers

Virginia Tech scientists develop process for creating biocompatible fibers

Blacksburg, VA | Posted on January 24, 2006

Scientists at Virginia Tech have developed a single-step process for creating nonwoven fibrous mats from a small organic molecule - creating a new nanoscale material with potential applications where biocompatible materials are required, such as scaffolds for tissue growth and drug delivery.

The research was presented in the Jan. 20 issue of Science, in the article, "Phospholipid Nonwoven Electrospun Membranes," by Matthew G. McKee, a recent Ph.D. graduate in chemical engineering from Virginia Tech's College of Engineering, now at P&G, current chemistry students John M. Layman and Matthew P. Cashion, and chemistry professor Timothy E. Long, all at Virginia Tech's College of Science.

"Phospholipids, which are the main component of cell membranes in the human body or in an apple are exquisite in terms of their ability to self-organize," said Long.

The researchers fabricated this natural compound into a sub micron fiber - 100 times smaller than a human hair. "It is the first demonstration that electrostatic spinning, or electrospinning, a polymer processing technique, can be used with a small molecule to produce a fiber. "Clothing fibers such as polyesters and nylons are composed of large molecules, macromolecules," Long said. "Now, we are fabricating fibers from small molecules - ones with a low molecular weight."

Under the microscope, the resulting mat shows a porous nonwoven structure.

The researchers used a commercial product, lecithin, a natural mixture of phospholipids and neutral lipids. The materials will spontaneously organize into cylindrical or worm-like strands to form membranes.

McKee studied this self-assembly and conducted rheological experiments to fundamentally understand the association of small molecules, then he determined that once phospholipids form an entangled network they can be treated similarly to higher weight molecules and electrospun. The size of the mats is limited only by the amount of material, such as lecithin.

"This represents the synergy of electrospinning, the use of self-organizing molecules, and fundamental research to understand the behavior of such molecules," Long said. "Matt (McKee) did a terrific job of bringing fundamental learning to a potentially new family of fabrics and membranes."

Long said that the future opportunities are vast. "Our research group continues to fabricate molecules that self organize and can be electrospun. Potential applications include drug delivery, that is, a carrier and matrix to control the release of drugs."

Long's research group is working with Virginia-Maryland Regional College of Veterinary Medicine researchers at Virginia Tech to develop a patch for drug delivery for horses. "We have not yet tested the specific biocompatibility (cytotoxicity) of our fibers, but we have not changed the chemical structure of the phospholipids."

The research is part of the Army Research Office Multidisciplinary University Research Initiative (MURI), which brings together chemistry, mechanical engineering, electrical engineering, chemical engineering, and materials science researchers to accelerate discoveries in nanostructured materials.

####
Media Contact:
Susan Trulove
540-231-5646
STrulove@vt.edu

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Nanomedicine

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Materials/Metamaterials

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE