Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotech research dominates UH contest

Abstract:
Three Students Take Top Honors in Student Superconductivity Symposium

From communications to biosensors, nanotech research dominates UH contest

Houston, TX | Posted on January 23, 2006

Fostering multidisciplinary research with projects ranging from those that impact the communications field to improving the fabrication of integrated circuitry used in data storage and biosensors, the 30th Semiannual Texas Center for Superconductivity at the University of Houston (TcSUH) Student Symposium recently showcased original research from UH science and engineering students.

Three students won top honors, including two from the College of Natural Sciences and Mathematics and one from the Cullen College of Engineering. First place went to Jason Shulman, a doctoral student in physics; second place went to Barry Craver, a doctoral student in electrical engineering; and third place went to Girish Nathan, a doctoral student in physics. Competitors gave 15-minute research presentations, followed by a brief question-and-answer period. A faculty panel judged each presenter on originality and quality of research, quality of presentation and skillful use of visual aids.

“I have always been interested in science and, in particular, the fundamental laws of nature,” first-place winner Shulman said, whose project leader is UH Professor of Physics and T.L.L. Temple Chair of Science Paul C.W. Chu. “Physics was a natural choice for my field of study. My research focuses on the dielectric properties of nanosystems. We have observed several important features that only exist in the nanoscale. These novel properties have the potential to impact fields ranging from communications to charged carrier gases.”

In second place, Craver, whose project leaders are Professor of Electrical Engineering John Wolfe and Associate Professor of Electrical Engineering Dmitri Litvinov, said, “I am fascinated by the complexity of fabricating integrated circuitry at nanometer dimensions. Recently, we’ve developed atom beam lithography, which uses a beam of energetic atoms to print nanometer-sized features. With this new technique we will fabricate extremely small magnetic devices for applications in data storage and ultra-high sensitivity magnetic and biological sensors.”

Third-place winner Nathan, whose project leader is Professor and Associate Chairman of Physics Gemunu Gunaratne, is also a physics student.

“From the time I was a child, the patterns I observed held a certain fascination for me,” he said. “I remember wondering about how and why they were formed. A childhood dream has been realized in a sense, since I work on pattern formation and on trying to understand why patterns really form, which is where a lot of my scientific curiosity began.”

TcSUH is internationally recognized for its multidisciplinary research and development of high-temperature superconductors (HTS) and related materials. (See related release here.)

####
Media Contact:
Lisa Merkl
University of Houston
External Communication
713/743-8192 (office)
713/605-1757 (pager)
lkmerkl@uh.edu

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Memory Technology

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

A powerful laser breakthrough: Lehigh research team demonstrates terahertz semiconductor laser with record-high output power May 2nd, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials March 21st, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Tools

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project