Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Nanotechnological Structures Reported

Abstract:
Work may lead to the development of an entirely new class of multifunctional materials

New Nanotechnological Structures Reported for the First Time in Journal Nature

Posted on January 06, 2006

A team of Columbia University and IBM scientists has created conditions necessary for the successful self-assembly of new nanotechnological structures -- at least 10 novel crystal arrangements that could form the basis of tomorrow's leading edge technology, the journal Nature reported in its Jan. 5, 2006 edition.

This scientific breakthrough provides a simpler, less costly method of generating new structures, helping scientists "grow" ordered superlattice crystals, as opposed to manipulating or "machining" them.

Nanotechnology, a scientific field in which the placement of specific atoms or molecules on the scale on nanometers (one billionth of a meter), allows for the assembly of unique structures that have a wide range of manufacturing and technological implications -- from magnetic storage in computer hard drives to surgical robotics to a number of defense-related technologies.

The findings of Stephen O'Brien, professor of applied physics and applied mathematics and a key member of the Materials Research Science and Engineering Center (MRSEC) at Columbia, along with Columbia postdoctoral research scientist Elena Shevchenko, were published in the Jan. 5, 2006, issue of Nature . MRSEC is an interdisciplinary team of university, industry and national laboratory scientists working together to develop new types of nanocrystals and ways of assembling them into thin films. The work on new structures was conducted in conjunction with Dmitri Talapin and Christopher Murray at the IBM Watson Research Center in Yorktown Heights, New York, and was supported by the National Science Foundation and the New York State Office of Science, Technology and Academic Research.

"You can think of nanocrystals as building blocks like the toy Lego, in which a larger structure can be assembled by locking in the pieces according to their shape and the way they prefer to join to each other," O'Brien says. "Except all of this is on an incredibly small lengthscale -- billionths of a meter."

The Columbia/IBM team has borrowed ideas from the natural world, in which the right conditions can stimulate the slow growth of highly uniform structures out of miniature building blocks. Opals are an example of this phenomenon: opals consist of tiny spherical building blocks of silica packed into an ordered structure. In this new research, the materials used as building blocks are a variety of man-made nanocrystals with known useful magnetic or electronic properties.

"This work may lead to the development of an entirely new class of multifunctional materials in which there are cooperative interactions between the nanocrystal components," says MRSEC director Irving P. Herman, also a professor of applied physics. "Moreover, the properties of these nanocrystals can be tailored during synthesis, and they can be deposited to form the desired ordered array by controlling particle charge and other properties. O'Brien's study also demonstrates the value of vibrant collaborations between universities and industry."

Said O'Brien, "This work could not have been achieved without the outstanding level of input and cooperation from the whole team. IBM's attitude toward collaborative research has been exceptional."

Considered the world's top multidisciplinary science journal, Nature publishes groundbreaking peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest and timeliness. Nature also provides insight on trends affecting science, scientists and the wider public.

####


Copyright © Columbia University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Self Assembly

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Design of self-assembling protein nanomachines starts to click: A nanocage builds itself from engineered components June 5th, 2014

Molecular self-assembly scales up from nanometers to millimeters June 5th, 2014

Nano world: Where towers construct themselves: How physicists get control on the self-assembly process June 2nd, 2014

Materials/Metamaterials

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE