Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Nanotechnological Structures Reported

Abstract:
Work may lead to the development of an entirely new class of multifunctional materials

New Nanotechnological Structures Reported for the First Time in Journal Nature

Posted on January 06, 2006

A team of Columbia University and IBM scientists has created conditions necessary for the successful self-assembly of new nanotechnological structures -- at least 10 novel crystal arrangements that could form the basis of tomorrow's leading edge technology, the journal Nature reported in its Jan. 5, 2006 edition.

This scientific breakthrough provides a simpler, less costly method of generating new structures, helping scientists "grow" ordered superlattice crystals, as opposed to manipulating or "machining" them.

Nanotechnology, a scientific field in which the placement of specific atoms or molecules on the scale on nanometers (one billionth of a meter), allows for the assembly of unique structures that have a wide range of manufacturing and technological implications -- from magnetic storage in computer hard drives to surgical robotics to a number of defense-related technologies.

The findings of Stephen O'Brien, professor of applied physics and applied mathematics and a key member of the Materials Research Science and Engineering Center (MRSEC) at Columbia, along with Columbia postdoctoral research scientist Elena Shevchenko, were published in the Jan. 5, 2006, issue of Nature . MRSEC is an interdisciplinary team of university, industry and national laboratory scientists working together to develop new types of nanocrystals and ways of assembling them into thin films. The work on new structures was conducted in conjunction with Dmitri Talapin and Christopher Murray at the IBM Watson Research Center in Yorktown Heights, New York, and was supported by the National Science Foundation and the New York State Office of Science, Technology and Academic Research.

"You can think of nanocrystals as building blocks like the toy Lego, in which a larger structure can be assembled by locking in the pieces according to their shape and the way they prefer to join to each other," O'Brien says. "Except all of this is on an incredibly small lengthscale -- billionths of a meter."

The Columbia/IBM team has borrowed ideas from the natural world, in which the right conditions can stimulate the slow growth of highly uniform structures out of miniature building blocks. Opals are an example of this phenomenon: opals consist of tiny spherical building blocks of silica packed into an ordered structure. In this new research, the materials used as building blocks are a variety of man-made nanocrystals with known useful magnetic or electronic properties.

"This work may lead to the development of an entirely new class of multifunctional materials in which there are cooperative interactions between the nanocrystal components," says MRSEC director Irving P. Herman, also a professor of applied physics. "Moreover, the properties of these nanocrystals can be tailored during synthesis, and they can be deposited to form the desired ordered array by controlling particle charge and other properties. O'Brien's study also demonstrates the value of vibrant collaborations between universities and industry."

Said O'Brien, "This work could not have been achieved without the outstanding level of input and cooperation from the whole team. IBM's attitude toward collaborative research has been exceptional."

Considered the world's top multidisciplinary science journal, Nature publishes groundbreaking peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest and timeliness. Nature also provides insight on trends affecting science, scientists and the wider public.

####


Copyright © Columbia University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Self Assembly

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Materials/Metamaterials

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project