Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Fixing by Filtration

Abstract:
New testing strips for detecting heavy metals

Fixing by Filtration

Posted on January 03, 2006

Many heavy meals are toxic to the environment or to humans. Legal limits for these pollutants in drinking water and run-off are thus correspondingly low. Rapid on-the-spot analysis and routine water quality tests demand a rapid, cost-effective method that doesn’t require complex instruments. Test strips that indicate the presence and concentration of a heavy metal when simply dipped into the water are ideal. Commercially available strips are currently not sufficiently reliable or sensitive. Japanese researchers have now developed a new generation of test strips that meet these high demands. Their secret is pigment nanocrystals that are fixed to a membrane filter by means of simple filtration.

One of the main problems of current testing strips for heavy metals is that the reagents can be washed out, which significantly reduces their effectiveness. A truly satisfactory process for the fixation of pigments was previously unknown. A research team headed by Toshishige M. Suzuki has now discovered a very simple method for fixing the heavy-metal-specific color reagents to the test strips so that they can neither be washed away by the test solution nor rubbed off. They were thus able to produce testing strips that react specifically to divalent zinc, mercury, and iron.

The color reagent must first be formed into nanoscopic particles. The pigment is thus dissolved in an organic solvent and then sprayed into vigorously stirred water. Because the pigment is not water-soluble, it crystallizes out, and under these conditions it crystallizes in the form of nanocrystals that are finely dispersed in the solution. When filtered through a cellulose membrane, 99.5 % of the nanoparticles stick to the membrane surface in a fine, dense, even layer. This precise control of the amount of pigment applied is an important requirement for testing strips that give reproducible results. The continuous layer of the color reagent makes the strips highly sensitive, allowing the detection of zinc ions at concentrations as low as 65 ppb (parts per billion). Lower detection limits can be achieved by the filtration of larger amounts of the test solution through the reagent-coated membrane.

This new method for the production of testing strips can be used for many water-insoluble color reagents, allowing for the development of a large family of metal-specific testing strips.

####


Author: Toshishige M. Suzuki, AIST Tohoku (Japan), unit.aist.go.jp/lmc/english/staff/staff_01.htm

Title: Test Strips for Heavy-Metal Ions Fabricated from Nanosized Dye Compounds

Angewandte Chemie International Edition, doi: 10.1002/anie.200503015

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials

New reaction for the synthesis of nanostructures July 21st, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Announcements

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Water

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic