Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon-rich molecules "supersized" for the first time

Abstract:
The giant superstructures permit researchers to test predictions of usefulness for synthetic carbon

Carbon-rich molecules "supersized" for the first time

Eugene, OR | Posted on December 02, 2005

A University of Oregon chemist has "supersized" carbon-rich molecules, enabling researchers for the first time to test theories about the useful properties of synthetic forms of carbon. The discovery by Mike Haley will be published as the cover story in the Dec. 9 edition of the Journal of Organic Chemistry (JOC). The story will be posted on the JOC website today (Dec. 2).

Artist's conception of chemistry professor Mike Haley's supersized carbon-rich molecules. Image credit: Annie Tykwinski.
Artist's conception of chemistry professor Mike Haley's "supersized" carbon-rich molecules. Image credit: Annie Tykwinski.

Click on image for larger version.

Scientists have long predicted that unnatural forms of carbon could have many technologically useful properties, much like those found for the natural phases of carbon, which are graphite and diamond. Haley's research seeks to prove those predictions are true and to do so, the new carbon materials must be of sufficient size to observe their properties.

"'Supersizing' fragments of unnatural carbon has enormous implications for determining future applications because certain properties can only be realized at much larger dimensions," said Haley. At a diameter of five to six nanometers (a nanometer is a billionth of a meter) the new disk-shaped molecules are more than twice the size of the one-to-two nanometer pieces previously developed by Haley's team. For instance, Haley explains that molecules of polystyrene used for Styrofoam cups are rigid because of their large size. At much smaller molecule sizes, however, the same material is a viscous liquid. "Size is important," he said.

Haley and doctoral student Jeremiah Marsden were able to produce several different supersized molecules by using acetylene subunits to link benzene anchors to form the giant networks. The expanded molecules have a high density of pi-electrons that are extremely useful for electronics and optics. Haley said the most promising application for the new material is in optical electronics and, specifically, switches used in telecommunications. Haley's group is collaborating with researchers at the University of Michigan to test the strength, reliability, and durability of the new material.

Mike Haley is a professor of chemistry and a member of the university's Materials Science Institute. His research was funded by a grant from the National Science Foundation.

####
Source:
Mike Haley
541-346-0456
Haley@uoregon.edu

Contact:
Kathy Madison
541-346-3145
kmadison@uoregon.edu

Links:
Mike Haley Webpage
The Journal of Organic Chemistry
Carbon Networks Based on Dehydrobenzoannulenes


Copyright University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Materials/Metamaterials

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic