Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Carbon-rich molecules "supersized" for the first time

Abstract:
The giant superstructures permit researchers to test predictions of usefulness for synthetic carbon

Carbon-rich molecules "supersized" for the first time

Eugene, OR | Posted on December 02, 2005

A University of Oregon chemist has "supersized" carbon-rich molecules, enabling researchers for the first time to test theories about the useful properties of synthetic forms of carbon. The discovery by Mike Haley will be published as the cover story in the Dec. 9 edition of the Journal of Organic Chemistry (JOC). The story will be posted on the JOC website today (Dec. 2).

Artist's conception of chemistry professor Mike Haley's supersized carbon-rich molecules. Image credit: Annie Tykwinski.
Artist's conception of chemistry professor Mike Haley's "supersized" carbon-rich molecules. Image credit: Annie Tykwinski.

Click on image for larger version.

Scientists have long predicted that unnatural forms of carbon could have many technologically useful properties, much like those found for the natural phases of carbon, which are graphite and diamond. Haley's research seeks to prove those predictions are true and to do so, the new carbon materials must be of sufficient size to observe their properties.

"'Supersizing' fragments of unnatural carbon has enormous implications for determining future applications because certain properties can only be realized at much larger dimensions," said Haley. At a diameter of five to six nanometers (a nanometer is a billionth of a meter) the new disk-shaped molecules are more than twice the size of the one-to-two nanometer pieces previously developed by Haley's team. For instance, Haley explains that molecules of polystyrene used for Styrofoam cups are rigid because of their large size. At much smaller molecule sizes, however, the same material is a viscous liquid. "Size is important," he said.

Haley and doctoral student Jeremiah Marsden were able to produce several different supersized molecules by using acetylene subunits to link benzene anchors to form the giant networks. The expanded molecules have a high density of pi-electrons that are extremely useful for electronics and optics. Haley said the most promising application for the new material is in optical electronics and, specifically, switches used in telecommunications. Haley's group is collaborating with researchers at the University of Michigan to test the strength, reliability, and durability of the new material.

Mike Haley is a professor of chemistry and a member of the university's Materials Science Institute. His research was funded by a grant from the National Science Foundation.

####
Source:
Mike Haley
541-346-0456
Haley@uoregon.edu

Contact:
Kathy Madison
541-346-3145
kmadison@uoregon.edu

Links:
Mike Haley Webpage
The Journal of Organic Chemistry
Carbon Networks Based on Dehydrobenzoannulenes


Copyright University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Materials/Metamaterials

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE