Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NJIT Study Shows Nanoparticles Could Damage Plant life

NJIT Study Shows Nanoparticles Could Damage Plant life

Posted on November 23, 2005

A nanoparticle commonly used in industry could have a damaging effect on plant life, according to a report by an environmental scientist at New Jersey Institute of Technology (NJIT).

The report, published in a recent issue of “Toxicology Letters,” shows that nanoparticles of alumina (aluminum oxide) slowed the growth of roots in five species of plants -- corn, cucumber, cabbage, carrot and soybean. Alumina nanoparticles are commonly used in scratch-resistant transparent coatings, sunscreen lotions that provide transparent-UV protection and environmental catalysts that reduce pollution, said Daniel J. Watts, PhD, the lead author of the study.

“Before this study there was an assumption that nanoparticles had no effect on plants,” said Watts, executive director of the York Center for Environmental Engineering and Science and Panasonic Chair in Sustainability at NJIT. “This study makes the observation that seedlings can interact with nanoparticles such as alumina, which can have a harmful effect on seedlings and perhaps stunt the growth of plants. “Other nanoparticles included in the study, such as silica, did not show this effect,” Watts added. He did the study with Ling Yang, a doctoral student who recently graduated from NJIT.

The authors conducted the study by allowing seeds to germinate on wet filter paper in Petri dishes, after which they added known quantities of nano-sized alumina suspended in water. The control portion of the experiment was treated only with water, and the authors observed the experiment for seven days. During that time, they measured the differences in the growth of the plants’ roots, which were shown to be statistically significant.

“We suppose that the surface characteristics of the nanoparticles played an important role in slowing the growth of the roots,” said Watts. “The smaller the particle, the larger is the total amount of surface area per unit weight. So the smaller you make the particles, the larger is the surface area, which we suspect is what contributes to the growth-slowing interaction between the seeds and the nanoparticles. The small size of the nanoparticles may be changed by the nanoparticles aggregating or clumping together.”

But what is still not understood, said Watts, is the nature of the interaction between the nanoparticle and the root of the seed. “What is the mechanism of the interaction between the particle and the root? That we don’t know as yet,” he said.

Nanoparticles can be deposited into air by exhaust systems, chimneys or smoke stacks, said Watts. The particles can also mix with rainwater and snow and gradually work their way into soil. It is difficult to take results from a lab experiment and conclude that is what happens in the real world, said Watts. “But we speculate that air deposits of nanoparticles or water transport of them are ways in which nanoparticles could mix with plant life,” he said.

The York Center for Environmental Engineering and Science at NJIT conducts research programs to achieve an ecologically sustainable future by correcting environmental damage caused by past action, and improving current environmental technology and practice, while providing for the economic and equity needs of people in New Jersey and throughout the world. The York Center has been developed from research and development programs that started in 1984 and involves researchers from most disciplines at the university.

####

About the New Jersey Institute of Technology:
New Jersey Institute of Technology, the state's public technological research university, enrolls more than 8,200 students in bachelor's, master's and doctoral degrees in 100 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and eLearning.

For more information, please click here

Contact:
Robert Florida
Public Relations
973-596-5203

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Materials/Metamaterials

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project