Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Combine Nanotubes and Antibodies to Detect Cancer

Abstract:
Work is aimed at developing nanotube-based biosensors that can spot cancer cells circulating in the blood from a treated tumor that has returned or from a new cancer

Jefferson and Delaware Researchers Combine Tiny Nanotubes and Antibodies to Detect Cancer

Posted on November 17, 2005

By coating the surfaces of tiny carbon nanotubes with monoclonal antibodies, biochemists and engineers at Jefferson Medical College and the University of Delaware have teamed up to detect cancer cells in a tiny drop of water. The work is aimed at developing nanotube-based biosensors that can spot cancer cells circulating in the blood from a treated tumor that has returned or from a new cancer.

The researchers, led by Eric Wickstrom, Ph.D., professor of biochemistry and molecular biology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and at the Kimmel Cancer Center at Jefferson, and Balaji Panchapakesan, Ph.D., assistant professor of electrical engineering at the University of Delaware in Newark, present their findings November 17, 2005 at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics in Philadelphia.

The group took advantage of a surge in electrical current in nanotube-antibody networks when cancer cells bind to the antibodies. They placed microscopic carbon nanotubes between electrodes, and then covered them with monoclonal antibodies – so-called guided protein missiles that home in on target protein “antigens” on the surface of cancer cells. The antibodies were specific for insulin-like growth factor 1 receptor (IGF1R), which is commonly found at high levels on cancer cells. They then measured the changes in electrical current through the antibody-nanotube combinations when two different types of breast cancer cells were applied to the devices.

The researchers found that the increase in current through the antibody-nanotube devices was proportional to the number of receptors on the cancer cell surfaces. One type, human BT474 breast cancer cells, which do not respond to estrogen, had moderate IGF1R levels, while the other type, MCF7, which needs estrogen to grow, had high IGF1R levels.

The BT474 cancer cells, which had less IGF1R on their surfaces, caused a three-fold jump in current. The MCF7 cells showed an eight-fold increase.

“When cancer cell bind to antibodies, there is a rush of electrons from the nanotube device into the cell,” Dr. Panchapakesan explains.

“The semiconductor nanotubes become more conductive,” says Dr. Wickstrom. “We saw a larger current increase for the MCF7 cells because it correlates with a greater expression of IGF1 receptors.” The cells have a surface protein that is recognized by the antibody on the nanotubes. The current spike occurs only if a target cancer cell with the right antibody target binds to the nanotube array.

“The breast cancer cells don’t give a spike if there is a non-specific antibody on the nanotube,” he says, “and cells without that target don’t cause a current jump whatever antibody is on the nanotubes. “This method could be used for detection and it could be used for recurring circulating tumor cells or micrometastases remaining from the originally treated tumor,” Dr. Wickstrom explains.

“The technique could be cost-effective and could diagnose whether cells are cancerous or not in seconds versus hours or days with histology sectioning,” says Dr. Panchapakesan. “It will allow for large scale production methods to make thousands of sensors and have microarrays of these to detect the fingerprints of specific kinds of cancer cells.”

Drs. Wickstrom and Panchapakesan would like to test the technique on additional breast cancer markers and markers for other kinds of cancers to determine its utility and breadth. In future studies, researchers will add cancer cells to a drop of blood and apply the mixture to the nanotube detector to see how sensitive it is in detecting the cancer cells mixed in with real blood cells and proteins. Another test might involve using the device to try to detect specific types of cancer cells shed in the blood from tumors in animals.

The technique has limitations. “We don’t know if we can detect more than one antigen at a time on a single cell,” Dr. Wickstrom says. Ultimately, the researchers would like to design an assay that can detect cancer cells circulating in the human bloodstream on a hand-held device no bigger than a cell phone.

####
Media Contact:
Steven Benowitz
Thomas Jefferson University Hospital
215-955-6300

Copyright © Thomas Jefferson University Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project