Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Combine Nanotubes and Antibodies to Detect Cancer

Abstract:
Work is aimed at developing nanotube-based biosensors that can spot cancer cells circulating in the blood from a treated tumor that has returned or from a new cancer

Jefferson and Delaware Researchers Combine Tiny Nanotubes and Antibodies to Detect Cancer

Posted on November 17, 2005

By coating the surfaces of tiny carbon nanotubes with monoclonal antibodies, biochemists and engineers at Jefferson Medical College and the University of Delaware have teamed up to detect cancer cells in a tiny drop of water. The work is aimed at developing nanotube-based biosensors that can spot cancer cells circulating in the blood from a treated tumor that has returned or from a new cancer.

The researchers, led by Eric Wickstrom, Ph.D., professor of biochemistry and molecular biology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and at the Kimmel Cancer Center at Jefferson, and Balaji Panchapakesan, Ph.D., assistant professor of electrical engineering at the University of Delaware in Newark, present their findings November 17, 2005 at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics in Philadelphia.

The group took advantage of a surge in electrical current in nanotube-antibody networks when cancer cells bind to the antibodies. They placed microscopic carbon nanotubes between electrodes, and then covered them with monoclonal antibodies – so-called guided protein missiles that home in on target protein “antigens” on the surface of cancer cells. The antibodies were specific for insulin-like growth factor 1 receptor (IGF1R), which is commonly found at high levels on cancer cells. They then measured the changes in electrical current through the antibody-nanotube combinations when two different types of breast cancer cells were applied to the devices.

The researchers found that the increase in current through the antibody-nanotube devices was proportional to the number of receptors on the cancer cell surfaces. One type, human BT474 breast cancer cells, which do not respond to estrogen, had moderate IGF1R levels, while the other type, MCF7, which needs estrogen to grow, had high IGF1R levels.

The BT474 cancer cells, which had less IGF1R on their surfaces, caused a three-fold jump in current. The MCF7 cells showed an eight-fold increase.

“When cancer cell bind to antibodies, there is a rush of electrons from the nanotube device into the cell,” Dr. Panchapakesan explains.

“The semiconductor nanotubes become more conductive,” says Dr. Wickstrom. “We saw a larger current increase for the MCF7 cells because it correlates with a greater expression of IGF1 receptors.” The cells have a surface protein that is recognized by the antibody on the nanotubes. The current spike occurs only if a target cancer cell with the right antibody target binds to the nanotube array.

“The breast cancer cells don’t give a spike if there is a non-specific antibody on the nanotube,” he says, “and cells without that target don’t cause a current jump whatever antibody is on the nanotubes. “This method could be used for detection and it could be used for recurring circulating tumor cells or micrometastases remaining from the originally treated tumor,” Dr. Wickstrom explains.

“The technique could be cost-effective and could diagnose whether cells are cancerous or not in seconds versus hours or days with histology sectioning,” says Dr. Panchapakesan. “It will allow for large scale production methods to make thousands of sensors and have microarrays of these to detect the fingerprints of specific kinds of cancer cells.”

Drs. Wickstrom and Panchapakesan would like to test the technique on additional breast cancer markers and markers for other kinds of cancers to determine its utility and breadth. In future studies, researchers will add cancer cells to a drop of blood and apply the mixture to the nanotube detector to see how sensitive it is in detecting the cancer cells mixed in with real blood cells and proteins. Another test might involve using the device to try to detect specific types of cancer cells shed in the blood from tumors in animals.

The technique has limitations. “We don’t know if we can detect more than one antigen at a time on a single cell,” Dr. Wickstrom says. Ultimately, the researchers would like to design an assay that can detect cancer cells circulating in the human bloodstream on a hand-held device no bigger than a cell phone.

####
Media Contact:
Steven Benowitz
Thomas Jefferson University Hospital
215-955-6300

Copyright © Thomas Jefferson University Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Nanomedicine

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Arrowhead Files for Regulatory Permission to Begin Phase 1 Trial of RNAi Therapeutic ARC-AAT November 18th, 2014

Sensors

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

“Dolomite’s Resealable Chip Interface offers easy access to microfluidic chip surface” November 10th, 2014

MEMS Industry Group's 10th Annual Executive Conference Showcases Rapid Innovation in MEMS/Sensors: Emphasizes Spirit of Collaboration, Supporting First Open-Source Algorithm Community, New Standardization Efforts November 10th, 2014

Announcements

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE