Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magic Trick with Gold and Glass

Abstract:
Glasses doped with gold particles of controllable size and shape deliver new materials for optoelectronic applications

Magic Trick with Gold and Glass

November 07, 2005

Even the ancient Romans were familiar with processes for coloring glass by adding gold. Initially colorless, the glass takes on a ruby-red color when heated in a controlled fashion. The source of this color is finely divided gold clusters. The light absorption depends on the concerted oscillation of the conducting electrons in all of the gold atoms in the cluster, called plasmon oscillation. Variation of the size, shape, or electrical properties of the particles’ surroundings should influence the frequency of the oscillation and thus the color of the absorbed light. This could allow for the production of materials that are suitable for use in nanophotonic components, including tiny optoelectronic circuits or optical storage devices.

How to make this work has been questionable until now, as the chemistry of gold in glass has long been a mystery. Newly published investigations have allowed K. Rademann and M. Eichelbaum in collaboration with the German Federal Institute for Materials Research and Testing to unravel this secret a little. Their first step was to produce soda–lime–silica glasses containing gold trichloride. They irradiated these glasses for five minutes with synchrotron radiation. Synchrotron radiation is extremely energetic, high-intensity light; it is produced when electrons are strongly accelerated—they nearly reach light speed within the synchrotron—and then are deflected by a magnet.

The synchrotron radiation effected a photochemical reduction of the trivalent gold ions to elemental gold, producing an even brown tone in the irradiated areas of the glasses. These were then heated to over 550 °C for a longer time (30–45 minutes) which led to the development of the red color that is characteristic of plasmon oscillation—evidence for the aggregation of gold clusters with a radius of between 3 and 6 nm, depending on the length of the treatment and the temperature. As the size of the gold particles increases, the researchers observe a red shift of the plasmon oscillation; that is, a shift to higher wavelength regions of the spectrum.

Simple heating thus allows the control of the size of gold particles in glasses that were previously activated with light; this allows for control of the absorption wavelength of the plasmon oscillation. This is a requirement for the use of these glasses as nanoscale components of optoelectronic circuits.

####


Author: Klaus Rademann, Humboldt-Universität zu Berlin (Germany),
www.chemie.hu-berlin.de/agrad/index.html

Title: On the Chemistry of Gold in Silicate Glasses: Studies on a Nonthermally Activated Growth of Gold Nanoparticles

Angewandte Chemie International Edition, doi: 10.1002/anie.200502174

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Materials/Metamaterials

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Announcements

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project