Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Magic Trick with Gold and Glass

Abstract:
Glasses doped with gold particles of controllable size and shape deliver new materials for optoelectronic applications

Magic Trick with Gold and Glass

November 07, 2005

Even the ancient Romans were familiar with processes for coloring glass by adding gold. Initially colorless, the glass takes on a ruby-red color when heated in a controlled fashion. The source of this color is finely divided gold clusters. The light absorption depends on the concerted oscillation of the conducting electrons in all of the gold atoms in the cluster, called plasmon oscillation. Variation of the size, shape, or electrical properties of the particles’ surroundings should influence the frequency of the oscillation and thus the color of the absorbed light. This could allow for the production of materials that are suitable for use in nanophotonic components, including tiny optoelectronic circuits or optical storage devices.

How to make this work has been questionable until now, as the chemistry of gold in glass has long been a mystery. Newly published investigations have allowed K. Rademann and M. Eichelbaum in collaboration with the German Federal Institute for Materials Research and Testing to unravel this secret a little. Their first step was to produce soda–lime–silica glasses containing gold trichloride. They irradiated these glasses for five minutes with synchrotron radiation. Synchrotron radiation is extremely energetic, high-intensity light; it is produced when electrons are strongly accelerated—they nearly reach light speed within the synchrotron—and then are deflected by a magnet.

The synchrotron radiation effected a photochemical reduction of the trivalent gold ions to elemental gold, producing an even brown tone in the irradiated areas of the glasses. These were then heated to over 550 °C for a longer time (30–45 minutes) which led to the development of the red color that is characteristic of plasmon oscillation—evidence for the aggregation of gold clusters with a radius of between 3 and 6 nm, depending on the length of the treatment and the temperature. As the size of the gold particles increases, the researchers observe a red shift of the plasmon oscillation; that is, a shift to higher wavelength regions of the spectrum.

Simple heating thus allows the control of the size of gold particles in glasses that were previously activated with light; this allows for control of the absorption wavelength of the plasmon oscillation. This is a requirement for the use of these glasses as nanoscale components of optoelectronic circuits.

####


Author: Klaus Rademann, Humboldt-Universität zu Berlin (Germany),
www.chemie.hu-berlin.de/agrad/index.html

Title: On the Chemistry of Gold in Silicate Glasses: Studies on a Nonthermally Activated Growth of Gold Nanoparticles

Angewandte Chemie International Edition, doi: 10.1002/anie.200502174

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Materials/Metamaterials

Production of Biocompatible Polymers in Iran October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE