Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magic Trick with Gold and Glass

Abstract:
Glasses doped with gold particles of controllable size and shape deliver new materials for optoelectronic applications

Magic Trick with Gold and Glass

November 07, 2005

Even the ancient Romans were familiar with processes for coloring glass by adding gold. Initially colorless, the glass takes on a ruby-red color when heated in a controlled fashion. The source of this color is finely divided gold clusters. The light absorption depends on the concerted oscillation of the conducting electrons in all of the gold atoms in the cluster, called plasmon oscillation. Variation of the size, shape, or electrical properties of the particles’ surroundings should influence the frequency of the oscillation and thus the color of the absorbed light. This could allow for the production of materials that are suitable for use in nanophotonic components, including tiny optoelectronic circuits or optical storage devices.

How to make this work has been questionable until now, as the chemistry of gold in glass has long been a mystery. Newly published investigations have allowed K. Rademann and M. Eichelbaum in collaboration with the German Federal Institute for Materials Research and Testing to unravel this secret a little. Their first step was to produce soda–lime–silica glasses containing gold trichloride. They irradiated these glasses for five minutes with synchrotron radiation. Synchrotron radiation is extremely energetic, high-intensity light; it is produced when electrons are strongly accelerated—they nearly reach light speed within the synchrotron—and then are deflected by a magnet.

The synchrotron radiation effected a photochemical reduction of the trivalent gold ions to elemental gold, producing an even brown tone in the irradiated areas of the glasses. These were then heated to over 550 °C for a longer time (30–45 minutes) which led to the development of the red color that is characteristic of plasmon oscillation—evidence for the aggregation of gold clusters with a radius of between 3 and 6 nm, depending on the length of the treatment and the temperature. As the size of the gold particles increases, the researchers observe a red shift of the plasmon oscillation; that is, a shift to higher wavelength regions of the spectrum.

Simple heating thus allows the control of the size of gold particles in glasses that were previously activated with light; this allows for control of the absorption wavelength of the plasmon oscillation. This is a requirement for the use of these glasses as nanoscale components of optoelectronic circuits.

####


Author: Klaus Rademann, Humboldt-Universität zu Berlin (Germany),
www.chemie.hu-berlin.de/agrad/index.html

Title: On the Chemistry of Gold in Silicate Glasses: Studies on a Nonthermally Activated Growth of Gold Nanoparticles

Angewandte Chemie International Edition, doi: 10.1002/anie.200502174

Contact:
Editorial office:
angewandte@wiley-vch.de

or David Greenberg (US)
dgreenbe@wiley.com

or Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Materials/Metamaterials

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project