Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Gilded Bacteria

Abstract:
Humidity sensor: hybrid nanoelectronics made from living bacteria and gold nanoparticles

Gilded Bacteria

October 07, 2005

Living organisms as an integral part of electronic components? What may look like science fiction at first glance is actually a serious approach to the nanoelectronics of tomorrow. Living organisms could provide the required nanostructures. Researchers at the University of Nebraska (Lincoln, USA) have now shown that bacteria coated with gold nanoparticles can function as a humidity sensor.

The properties of metallic nanoparticles differ radically from those of larger particles and are of great interest for nanoelectronics. In order to use nanoparticles, they must be placed on a suitable support, a “nanoscaffold.” “Biological structures have proven to be promising supports,” explains Ravi Saraf, “especially when their responses to stimuli can be integrated.”

Saraf and his co-worker, Vikas Berry, produced a chip covered with extremely fine gold electrodes and applied a suspension of Bacillus cereus. On such surfaces, these long bacteria basically lie down to form bridges between the pairs of electrodes. Then the nanoparticles come in: the researchers dipped their chip into a solution of gold nanoparticles coated with polylysine, a synthetic protein. The tiny gold particles are strongly attracted to the bacterial surface, which contains long, brushlike, highly mobile chain molecules that are negatively charged. Like tentacles, these surround the gold particles - positively charged by the polylysine - and hold them tight. At the end of this process, the bacteria are coated with a thin layer of gold nanoparticles - and are still alive.

The researchers apply a voltage of 10 V across the electrode pairs and measure the current across the bacterial bridges to complete the bioelectronic humidity sensor. If the humidity is increased from about 0 to 20%, the current decerases by a factor of 40. Why does this chip react so sensitively to changes in humidity? Moisture causes the bacterial membrane to swell, which increases the distance between the individual gold particles attached to it by about 0.2 nm. This is not much, but it is enough to hinder electron transport between the particles. Unlike a “normal” macroscopic gold layer, in which the electrons can “flow” unhindered, here they must “jump” from one particle to the next.

“Our humidity sensor demonstrates the vast potential that lies in hybrid structures containing microorganisms and nanoparticles,” says Saraf.

####


Author: Ravi F. Saraf, University of Nebraska, Lincoln (USA), link

Title: Self-Assembly of Nanoparticles on Live Bacterium: An Avenue to Fabricate Electronic Devices

Angewandte Chemie International Edition 2005, 44, 6668, doi: 10.1002/anie.200501711

Contact:
Editorial office: angewandte@wiley-vch.de

David Greenberg (US)
dgreenbe@wiley.com

Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Sensors

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Nanoelectronics

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Materials/Metamaterials

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Announcements

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE