Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Penn Theorists to Create Optical Circuit Elements

Abstract:
Technology could have innumerable applications for consumer products, advanced instrumentation and even medicine

A Beam of Light on a Path of Gold to a Miniaturized World: Penn Theorists to Create Optical Circuit Elements

September 28, 2005

Engineers at the University of Pennsylvania have theorized a means of shrinking electronics so they could be run using light instead of electricity. In the search to create faster, smaller and more energy-efficient electronics, researchers have looked elsewhere in the electromagnetic spectrum, which ranges from the low-frequency energy used in everyday electronics to the high-frequency energy of gamma rays, to pass the limits of conventional technology.

In the Aug. 26 issue of Physical Review Letters, currently online, the Penn theorists outline how familiar circuit elements -- inductors, capacitors and resistors could be created on the nanoscale (about a billionth of a meter) in order to operate using infrared or visible light. The Penn researchers describe how nanoscale particles of certain materials, depending on their unique optical properties, could work as circuit elements. For example, nanoscale particles of certain metals, such as gold or silver, could perform the same function in manipulating an "electric" current as an inductor does on a circuit board.

Optical electronics would make it possible to create faster computer processors, construct nanoscale antennas or build more information-dense data- storage devices. Optical electronics could also have exotic applications that simply are not possible with conventional electronics, such as the ability to couple an electronic signal to an individual molecule or the creation of biological circuits.

"The wavelength of light can be measured in hundreds of nanometers and the technology is now available to create structures that would operate on the same or smaller scale as the wavelength of light," wrote Nader Engheta, lead author, and H. Nedwill Ramsey, professor in the Department of Electrical and Systems Engineering of Penn's School of Engineering and Applied Science. "Our work is theoretical, of course, but we do not foresee any sizable barriers to our plan to make these circuit elements in the near future."

Before they could describe how to create optical circuit elements, Engheta, his coauthors and students Alessandro Salandrino and Andrea Al had to first envision how nanoscale materials might interact with light. To do so they looked at a property critical to basic wave interaction called permittivity, which describes how a particular substance affects electromagnetic fields. If a small sphere is created, about a few tens of nanometers across, they explained, light would affect it differently based on its permittivity.

According to their models, the theorists demonstrated that nano-sized sphere made up of a nonmetallic material such as glass with permittivity greater than zero would act like a miniaturized capacitor. A nano-sized sphere made up of a metallic material such as gold or silver with a permittivity less than zero would act like a miniaturized inductor. Either material could also function like a miniaturized resistor, depending on how the optical energy is lost in it.

"So now we have three basic elements of a circuit," Enghata said. "Stacked one upon the other, you could create fairly advanced combinations of circuitry. It is even possible to use these elements to create 'nano' transmission lines and 'nano' cables.

"For years, conventional circuit elements have been the basic building bloc in making functional circuits at lower frequencies," Engheta said. "But now we have the tools to push back the limits of speed and power on electronics. This technology could have innumerable applications for consumer products, advanced instrumentation and even medicine."

####
Contact:
Greg Lester
215-573-6604
glester@pobox.upenn.edu

Copyright University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Chip Technology

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanoelectronics

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Materials/Metamaterials

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project