Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn Theorists to Create Optical Circuit Elements

Abstract:
Technology could have innumerable applications for consumer products, advanced instrumentation and even medicine

A Beam of Light on a Path of Gold to a Miniaturized World: Penn Theorists to Create Optical Circuit Elements

September 28, 2005

Engineers at the University of Pennsylvania have theorized a means of shrinking electronics so they could be run using light instead of electricity. In the search to create faster, smaller and more energy-efficient electronics, researchers have looked elsewhere in the electromagnetic spectrum, which ranges from the low-frequency energy used in everyday electronics to the high-frequency energy of gamma rays, to pass the limits of conventional technology.

In the Aug. 26 issue of Physical Review Letters, currently online, the Penn theorists outline how familiar circuit elements -- inductors, capacitors and resistors could be created on the nanoscale (about a billionth of a meter) in order to operate using infrared or visible light. The Penn researchers describe how nanoscale particles of certain materials, depending on their unique optical properties, could work as circuit elements. For example, nanoscale particles of certain metals, such as gold or silver, could perform the same function in manipulating an "electric" current as an inductor does on a circuit board.

Optical electronics would make it possible to create faster computer processors, construct nanoscale antennas or build more information-dense data- storage devices. Optical electronics could also have exotic applications that simply are not possible with conventional electronics, such as the ability to couple an electronic signal to an individual molecule or the creation of biological circuits.

"The wavelength of light can be measured in hundreds of nanometers and the technology is now available to create structures that would operate on the same or smaller scale as the wavelength of light," wrote Nader Engheta, lead author, and H. Nedwill Ramsey, professor in the Department of Electrical and Systems Engineering of Penn's School of Engineering and Applied Science. "Our work is theoretical, of course, but we do not foresee any sizable barriers to our plan to make these circuit elements in the near future."

Before they could describe how to create optical circuit elements, Engheta, his coauthors and students Alessandro Salandrino and Andrea Al had to first envision how nanoscale materials might interact with light. To do so they looked at a property critical to basic wave interaction called permittivity, which describes how a particular substance affects electromagnetic fields. If a small sphere is created, about a few tens of nanometers across, they explained, light would affect it differently based on its permittivity.

According to their models, the theorists demonstrated that nano-sized sphere made up of a nonmetallic material such as glass with permittivity greater than zero would act like a miniaturized capacitor. A nano-sized sphere made up of a metallic material such as gold or silver with a permittivity less than zero would act like a miniaturized inductor. Either material could also function like a miniaturized resistor, depending on how the optical energy is lost in it.

"So now we have three basic elements of a circuit," Enghata said. "Stacked one upon the other, you could create fairly advanced combinations of circuitry. It is even possible to use these elements to create 'nano' transmission lines and 'nano' cables.

"For years, conventional circuit elements have been the basic building bloc in making functional circuits at lower frequencies," Engheta said. "But now we have the tools to push back the limits of speed and power on electronics. This technology could have innumerable applications for consumer products, advanced instrumentation and even medicine."

####
Contact:
Greg Lester
215-573-6604
glester@pobox.upenn.edu

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Chip Technology

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Nanoelectronics

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Materials/Metamaterials

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE