Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn Theorists to Create Optical Circuit Elements

Abstract:
Technology could have innumerable applications for consumer products, advanced instrumentation and even medicine

A Beam of Light on a Path of Gold to a Miniaturized World: Penn Theorists to Create Optical Circuit Elements

September 28, 2005

Engineers at the University of Pennsylvania have theorized a means of shrinking electronics so they could be run using light instead of electricity. In the search to create faster, smaller and more energy-efficient electronics, researchers have looked elsewhere in the electromagnetic spectrum, which ranges from the low-frequency energy used in everyday electronics to the high-frequency energy of gamma rays, to pass the limits of conventional technology.

In the Aug. 26 issue of Physical Review Letters, currently online, the Penn theorists outline how familiar circuit elements -- inductors, capacitors and resistors could be created on the nanoscale (about a billionth of a meter) in order to operate using infrared or visible light. The Penn researchers describe how nanoscale particles of certain materials, depending on their unique optical properties, could work as circuit elements. For example, nanoscale particles of certain metals, such as gold or silver, could perform the same function in manipulating an "electric" current as an inductor does on a circuit board.

Optical electronics would make it possible to create faster computer processors, construct nanoscale antennas or build more information-dense data- storage devices. Optical electronics could also have exotic applications that simply are not possible with conventional electronics, such as the ability to couple an electronic signal to an individual molecule or the creation of biological circuits.

"The wavelength of light can be measured in hundreds of nanometers and the technology is now available to create structures that would operate on the same or smaller scale as the wavelength of light," wrote Nader Engheta, lead author, and H. Nedwill Ramsey, professor in the Department of Electrical and Systems Engineering of Penn's School of Engineering and Applied Science. "Our work is theoretical, of course, but we do not foresee any sizable barriers to our plan to make these circuit elements in the near future."

Before they could describe how to create optical circuit elements, Engheta, his coauthors and students Alessandro Salandrino and Andrea Al had to first envision how nanoscale materials might interact with light. To do so they looked at a property critical to basic wave interaction called permittivity, which describes how a particular substance affects electromagnetic fields. If a small sphere is created, about a few tens of nanometers across, they explained, light would affect it differently based on its permittivity.

According to their models, the theorists demonstrated that nano-sized sphere made up of a nonmetallic material such as glass with permittivity greater than zero would act like a miniaturized capacitor. A nano-sized sphere made up of a metallic material such as gold or silver with a permittivity less than zero would act like a miniaturized inductor. Either material could also function like a miniaturized resistor, depending on how the optical energy is lost in it.

"So now we have three basic elements of a circuit," Enghata said. "Stacked one upon the other, you could create fairly advanced combinations of circuitry. It is even possible to use these elements to create 'nano' transmission lines and 'nano' cables.

"For years, conventional circuit elements have been the basic building bloc in making functional circuits at lower frequencies," Engheta said. "But now we have the tools to push back the limits of speed and power on electronics. This technology could have innumerable applications for consumer products, advanced instrumentation and even medicine."

####
Contact:
Greg Lester
215-573-6604
glester@pobox.upenn.edu

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Air Forceís 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Chip Technology

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Speed at its limits September 30th, 2014

Nanoelectronics

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Letiís 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE