Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Helping Out a High-Temperature Superconductor

Abstract:
An important step in the drive to create superconductor-based electric and power-delivery devices, such as power transmission lines, motors, and generators

Helping Out a High-Temperature Superconductor

September 15, 2005

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have discovered a way to significantly increase the amount of electric current carried by a high-temperature superconductor, a material that conducts electricity with no resistance. This is an important step in the drive to create superconductor-based electric and power-delivery devices, such as power transmission lines, motors, and generators. The results are explained in the September 12, 2005, online edition of Applied Physics Letters.

"In theory, superconducting materials can conduct an enormous amount of electric current. But when incorporated into actual devices, certain factors tend to limit the current," said Brookhaven materials scientist Qiang Li, a co-author on the paper. "We studied these factors and found that one, which we call 'substrate roughness,' can actually significantly increase the current-carrying capacity."

The superconducting material studied here consists of the elements yttrium, barium, copper, and oxygen. Dubbed YBCO, it is a member of a class of copper- and oxygen-containing superconductors called "cuprates." Cuprates are "high-temperature" superconductors because they superconduct at temperatures much "warmer" than conventional superconductors (although still very cold) - for example, -300F rather than -440F. This difference, while not huge, is enough to make cuprates more viable for practical applications than materials that must be kept much colder. In many of these applications, YBCO films are deposited onto a 'normal' metal surface (the "substrate"), forming components known as coated conductors. One of the factors widely thought to degrade the performance of coated conductors is the roughness of the metal surface.

To verify this, Li and his colleagues set out to study and measure how the roughness of the substrate affects the current-carrying capacity of YBCO. The researchers deposited a YBCO layer onto a substrate prepared with two distinct areas: a rough, corrugated region with nanometer (billionth-of-a-meter) sized ridges and grooves, and a smooth region. This configuration allowed the group to directly compare the behavior of the YBCO film on both surface types. They were able to do this using electrical-transport measurement techniques, which track the amount of supercurrent passing through the material, and "magneto-optical" imaging, a technique used to study superconductors by following their magnetic behavior.

"What we found is remarkable and surprising," said lead author Zuxin Ye, a graduate student under Li's supervision. "Rather than limiting the current, the nanoscaled corrugated surface produces more than a 30 percent increase in the supercurrent carried by the YBCO films. This suggests that metal substrates with some degree of roughness at the nanoscale might help improve the performance of high-temperature superconductors." The work is the result of a collaboration between scientists in Brookhaven Lab's Materials Science Department, the Condensed Matter Physics group within the Physics Department, and the Lab's Center for Functional Nanomaterials. It was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science.

####

About Brookhaven National Laboratory:
One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, visit www.bnl.gov/newsroom

Contact:
BNL Media & Communications
pubaf@bnl.gov
Phone: 631-344-3174 or 2345
Fax: 631-344-3368
Brookhaven National Laboratory
Bldg. 134 PO Box 5000
Upton, NY 11973

Copyright Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an open system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Materials/Metamaterials

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Announcements

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an open system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

Energy

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project