Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Helping Out a High-Temperature Superconductor

Abstract:
An important step in the drive to create superconductor-based electric and power-delivery devices, such as power transmission lines, motors, and generators

Helping Out a High-Temperature Superconductor

September 15, 2005

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have discovered a way to significantly increase the amount of electric current carried by a high-temperature superconductor, a material that conducts electricity with no resistance. This is an important step in the drive to create superconductor-based electric and power-delivery devices, such as power transmission lines, motors, and generators. The results are explained in the September 12, 2005, online edition of Applied Physics Letters.

"In theory, superconducting materials can conduct an enormous amount of electric current. But when incorporated into actual devices, certain factors tend to limit the current," said Brookhaven materials scientist Qiang Li, a co-author on the paper. "We studied these factors and found that one, which we call 'substrate roughness,' can actually significantly increase the current-carrying capacity."

The superconducting material studied here consists of the elements yttrium, barium, copper, and oxygen. Dubbed YBCO, it is a member of a class of copper- and oxygen-containing superconductors called "cuprates." Cuprates are "high-temperature" superconductors because they superconduct at temperatures much "warmer" than conventional superconductors (although still very cold) - for example, -300°F rather than -440°F. This difference, while not huge, is enough to make cuprates more viable for practical applications than materials that must be kept much colder. In many of these applications, YBCO films are deposited onto a 'normal' metal surface (the "substrate"), forming components known as coated conductors. One of the factors widely thought to degrade the performance of coated conductors is the roughness of the metal surface.

To verify this, Li and his colleagues set out to study and measure how the roughness of the substrate affects the current-carrying capacity of YBCO. The researchers deposited a YBCO layer onto a substrate prepared with two distinct areas: a rough, corrugated region with nanometer (billionth-of-a-meter) sized ridges and grooves, and a smooth region. This configuration allowed the group to directly compare the behavior of the YBCO film on both surface types. They were able to do this using electrical-transport measurement techniques, which track the amount of supercurrent passing through the material, and "magneto-optical" imaging, a technique used to study superconductors by following their magnetic behavior.

"What we found is remarkable and surprising," said lead author Zuxin Ye, a graduate student under Li's supervision. "Rather than limiting the current, the nanoscaled corrugated surface produces more than a 30 percent increase in the supercurrent carried by the YBCO films. This suggests that metal substrates with some degree of roughness at the nanoscale might help improve the performance of high-temperature superconductors." The work is the result of a collaboration between scientists in Brookhaven Lab's Materials Science Department, the Condensed Matter Physics group within the Physics Department, and the Lab's Center for Functional Nanomaterials. It was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science.

####

About Brookhaven National Laboratory:
One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, visit www.bnl.gov/newsroom

Contact:
BNL Media & Communications
pubaf@bnl.gov
Phone: 631-344-3174 or 2345
Fax: 631-344-3368
Brookhaven National Laboratory
Bldg. 134 PO Box 5000
Upton, NY 11973

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Materials/Metamaterials

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Energy

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project