Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rice Researchers Gain New Insight Into Nanoscale Optics

Abstract:
Findings May Lead To Advances In On-chip Data Transmission

Rice Researchers Gain New Insight Into Nanoscale Optics

Houston, TX | September 14, 2005

New research from Rice University has demonstrated an important analogy between electronics and optics that will enable light waves to be coupled efficiently to nanoscale structures and devices.

The research is available online from the journal Nano Letters and will appear in an upcoming print edition.

"We've discovered a universal relationship between the behavior of light and electrons," said study co-author Peter Nordlander, professor of physics and astronomy and of electrical and computer engineering. "We believe the relationship can be exploited to create nanoscale antennae that convert light into broadband electrical signals capable of carrying approximately 1 million times more data than existing interconnects."

Both light and electrons share similar properties, at times behaving like waves, at other times like particles. Many interesting solid-state phenomena, such as the scattering of atoms off surfaces and the behavior of quantum devices, can be understood as wavelike electrons interacting with discrete, localized electrons. Now, Rice researchers have discovered and demonstrated a simple geometry where light behaves exactly as electrons do in these systems.

In recent years there has been intense interest in developing ways to guide and manipulate light at dimensions much smaller than optical wavelengths. Metals like gold and silver have ideal properties to accomplish this task. Special types of light-like waves, called plasmons, can be transmitted along the surfaces of metals in much the same way as light in conventional optical fibers.

When small metallic nanoparticles are positioned on the metal film, they behave like tiny antennae that can transmit or receive light; it is this behavior that has been found to mimic that of electrons. Until now, the coupling of light waves into extended nanoscale structures has been poorly understood.

Nordlander's research was conducted under the auspices of Rice's Laboratory for Nanophotonics (LANP), a multidisciplinary group that studies the interactions of light with nanoscale particles and structures. The study was co-authored by LANP Director Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. The findings stem from a relatively new area of research called plasmonics, which is a major LANP research thrust.

In the latest research, Halas' graduate student Nyein Lwin placed a tiny sphere of gold - measuring about 50 nanometers in diameter, within just a few nanometers of a thin gold film. When a light excited a plasmon in the nanosphere, this plasmon was converted into a plasmon wave on the film, for certain specific film thicknesses.

The experiments confirmed theoretical work by Nordlander's graduate student Fei Le, who showed that the interactions between thin-film surface plasmons and the plasmons of nearby nanoparticles were equivalent to the "standard impurity problem," a well-characterized phenomenon that condensed matter physicists have studied for more than four decades.

Other co-authors on the paper include Halas's graduate student Jennifer Steele, now a Professor at Trinity University, and former Texas Instruments Visiting Professor Mikael Kšll of Chalmers University of Technology in Gothenburg, Sweden.

The research was funded by the Army Research Office, the Air Force Office of Scientfic Research, the Welch Foundation, the National Science Foundation, NASA and Texas Instruments.

####

About Rice University:
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: sizeč2,850 undergraduates and 1,950 graduate students; selectivity -10 applicants for each place in the freshman class; resources - an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, visit www.rice.edu

Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Materials/Metamaterials

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project