Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > QinetiQ Nanomaterials' Breakthrough in hybrid aluminium powders

Abstract:
New pyrotechnic and explosive applications possible with Tesimorph® EAB-80

QinetiQ Nanomaterials' Breakthrough in hybrid aluminium powders

September 12, 2005

Tesimorph® EAB-80, a new experimental aluminium / boron material with a particle size of 80nm, has just been developed under a research contract from the UK MOD by QinetiQ Nanomaterials Limited (QNL). It offers significant potential for applications like pyrotechnics for air bags, rocket motors (both hybrid motors and solid propellant) and other propellants where enhanced energy and faster burn rates are required.

QinetiQ Nanomaterials - Tesimorph® EAB-80
QinetiQ's Tesimorph EAB-80 at 200nm. Copyright © QinetiQ Nanomaterials
Click on image for larger version.

"This is the first time an aluminium boron hybrid particle has been produced at the nano scale and it's many times smaller than anything currently available," explained Dr Paul Reip, Managing Director of QNL. "Conventional process methods for aluminium powders tend to produce relatively large, micron size particles. Our experimental work on alloyed and structured metal nanoparticles using our Tesima® process not only produces commercial quantities of nano size aluminium particles, opening up a wide range of potential applications, it can also result in hybrid materials and alloys that cannot otherwise be produced."

QNL develops bespoke metal, oxide, carbide and nitride nanopowders in the 20nm to 100nm particle size range for specific customer applications using its patented Tesima® process. The process is continuous, allowing extended operation and is scaleable so that quantities from kilogrammes to tonnes are possible. By incorporating materials at the nano scale, different physical properties can be added to existing materials, either improving their functionality or giving them unique properties. Powders are manufactured dry but can also be incorporated into other media, such as liquids or polymers.

The Tesima® process has great flexibility and a far greater range of capability than the manufacture of basic metal and oxide nanopowders. This latest development is part of QinetiQ's ongoing work on complex and modified nanomaterials under the Tesimorph® brand. Although still in the early stages it is already creating a diverse range of complex and structured materials, including alloys that for the first time can be made at the nano scale. Tesimorph® ES-25 Stainless Steel which was first manufactured earlier this year was QinetiQ's first move into this area and others in the family should include shape memory alloys.

By up rating its Tesima® production system QinetiQ is now able to produce continuously reactive metal powders in safety. It can also now develop a range of materials to improve the performance of devices such as airbags and seat belt tensioners as well as devices for the oil and gas industry, aerospace and defence.

Dr Paul Reip concluded: "We have now reached a point where we are actively seeking industrial partners to further develop this family of metallic Tesimorph® nanomaterials and bring them to market. The key issue is always the need to scale up the manufacture. The Tesima® process can be scaled to produce consistent and reproducible product and is an excellent match for large scale industrial development."

Recently developed nanomaterials include silver - a material with numerous applications, particularly valued for its anti microbial properties; aluminium for energetics and explosive applications; cuprous oxide for anti fungal applications; tungsten carbide for cermets; zinc oxide for UV protection; and cerium oxide for catalysts.

QNL is a wholly owned subsidiary of QinetiQ Group, Europe's largest research and technology organisation.

####
Contact:
Douglas Millard
QinetiQ Press Office
T: +44 (0)1252 394611
E: DMillard@QinetiQ.com
P: 07659 101004
M: 07818 017157

Copyright © QinetiQ Nanomaterials

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Materials/Metamaterials

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Announcements

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Military

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE