Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > QinetiQ Nanomaterials' Breakthrough in hybrid aluminium powders

Abstract:
New pyrotechnic and explosive applications possible with Tesimorph® EAB-80

QinetiQ Nanomaterials' Breakthrough in hybrid aluminium powders

September 12, 2005

Tesimorph® EAB-80, a new experimental aluminium / boron material with a particle size of 80nm, has just been developed under a research contract from the UK MOD by QinetiQ Nanomaterials Limited (QNL). It offers significant potential for applications like pyrotechnics for air bags, rocket motors (both hybrid motors and solid propellant) and other propellants where enhanced energy and faster burn rates are required.

QinetiQ Nanomaterials - Tesimorph® EAB-80
QinetiQ's Tesimorph EAB-80 at 200nm. Copyright © QinetiQ Nanomaterials
Click on image for larger version.

"This is the first time an aluminium boron hybrid particle has been produced at the nano scale and it's many times smaller than anything currently available," explained Dr Paul Reip, Managing Director of QNL. "Conventional process methods for aluminium powders tend to produce relatively large, micron size particles. Our experimental work on alloyed and structured metal nanoparticles using our Tesima® process not only produces commercial quantities of nano size aluminium particles, opening up a wide range of potential applications, it can also result in hybrid materials and alloys that cannot otherwise be produced."

QNL develops bespoke metal, oxide, carbide and nitride nanopowders in the 20nm to 100nm particle size range for specific customer applications using its patented Tesima® process. The process is continuous, allowing extended operation and is scaleable so that quantities from kilogrammes to tonnes are possible. By incorporating materials at the nano scale, different physical properties can be added to existing materials, either improving their functionality or giving them unique properties. Powders are manufactured dry but can also be incorporated into other media, such as liquids or polymers.

The Tesima® process has great flexibility and a far greater range of capability than the manufacture of basic metal and oxide nanopowders. This latest development is part of QinetiQ's ongoing work on complex and modified nanomaterials under the Tesimorph® brand. Although still in the early stages it is already creating a diverse range of complex and structured materials, including alloys that for the first time can be made at the nano scale. Tesimorph® ES-25 Stainless Steel which was first manufactured earlier this year was QinetiQ's first move into this area and others in the family should include shape memory alloys.

By up rating its Tesima® production system QinetiQ is now able to produce continuously reactive metal powders in safety. It can also now develop a range of materials to improve the performance of devices such as airbags and seat belt tensioners as well as devices for the oil and gas industry, aerospace and defence.

Dr Paul Reip concluded: "We have now reached a point where we are actively seeking industrial partners to further develop this family of metallic Tesimorph® nanomaterials and bring them to market. The key issue is always the need to scale up the manufacture. The Tesima® process can be scaled to produce consistent and reproducible product and is an excellent match for large scale industrial development."

Recently developed nanomaterials include silver - a material with numerous applications, particularly valued for its anti microbial properties; aluminium for energetics and explosive applications; cuprous oxide for anti fungal applications; tungsten carbide for cermets; zinc oxide for UV protection; and cerium oxide for catalysts.

QNL is a wholly owned subsidiary of QinetiQ Group, Europe's largest research and technology organisation.

####
Contact:
Douglas Millard
QinetiQ Press Office
T: +44 (0)1252 394611
E: DMillard@QinetiQ.com
P: 07659 101004
M: 07818 017157

Copyright © QinetiQ Nanomaterials

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Materials/Metamaterials

Production of Biocompatible Polymers in Iran October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Military

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE