Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Gel on Command

Abstract:
Switching between liquid and gel: counterion-dependent conformational change in molecular aggregates

Gel on Command

September 02, 2005

Twisted nanostructures are an important biological motif - just think of the DNA double helix or proteins with helical sections important to their function. Researchers are anxious to produce artificial helices, which could be useful in nanotechnological applications. Korean researchers have now successfully created a molecular system that can even form helices “on demand,” turning the initially liquid solution into a gel.

A team at Yonsei University in Seoul, Korea, headed by Myongsoo Lee, have developed a special type of molecule as the basic building block for their helices. This involves a base consisting of three aromatic rings which is bent like a boomerang. The central ring has a long, branched side-chain hanging from it. When a silver salt is added to a solution of these molecules, complexes form between the molecules and the positively charged silver ions; the “boomerangs” really get a hold on the silver ions. If the negatively charged counterion in the silver salt is boron tetrafluoride (BF4-), the complexes pile up into long, twisted columns. The BF4 ions fit exactly into the cavity that remains inside the “belly” of the helices and stabilize them. This results in a surprise: The liquid turns into a jelly-like mass. How does this happen? It turns out that the helices aggregate into regular bundles of fibers, which get tangled up with each other to form an interwoven, three-dimensional network. The liquid remains trapped inside this fibrous framework; this forms a gel, a kind of intermediate between a liquid and a solid. If a fluoride salt is then added to the gel, it liquefies. This is a result of the enormous attraction of the fluoride ions (F-) for the silver ions, which are lured out of their complexes. The fibrous aggregates collapse back into individual molecules. This effect is reversible if the fluoride ions are trapped by the addition of other salts.

If salts containing the C2F5CO2- ion are added to the gel, it also liquefies. Electron microscopy images show that in this case, the phenomenon has a different cause. The complexes do not fall apart into individual molecules, but form a different structure instead. Instead of interwoven helical columns, they form individual zigzagging bands. The reason for this change in structure is the difference in size of the anions: C2F5CO2- is bigger than BF4- and thus does not fit into the cavity inside the helices, which are thus not stabilized. The result of all this is the birth of a new type of “intelligent” nanomaterial whose properties can be switched solely by the choice of counterion.

####


Author: Myongsoo Lee, Yonsei University, Seoul (Korea), link

Title: Stimuli-Responsive Gels from Reversible Coordination Polymers

Angewandte Chemie International Edition 2005, 44, 5810, doi: 10.1002/anie.200501270

Contact:
Editorial office
angewandte@wiley-vch.de

David Greenberg (US)
dgreenbe@wiley.com

Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project