Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-particle dispersion technique improves polymers

Abstract:
Supercritical fluid carbon dioxide used; melt properties provide monitor

Virginia Tech researcher reports nano-particle dispersion technique improves polymers

Blacksburg, VA | August 29, 2005

There is a lot of excitement about incorporating nano particles into polymers because of the ability to improve various properties with only a small percent of the particles. "You can improve the barrier to gases, such as hydrogen, carbon dioxide, and oxygen. You can increase material strength with little increase in weight," said Don Baird, professor of chemical engineering at Virginia Tech.

But there are problems. "While 1 percent by weight of nano particles will change a material's properties dramatically, 2 or 3 percent provides hardly any additional enhancement," he said. "The particles just clump together, and thereby reduce the advantages associated with the surface area of single particles."

Another problem is that the incorporation of nano particles changes a polymer's flow properties leading to potential processing problems.

Baird's research group at Virginia Tech has developed a method for improving the dispersion, or exfoliation, of individual nano particles into polymers. He will present his research at the 230th American Chemical Society National Meeting, held in Washington, D.C., Aug. 28-Sept. 1. "The paper will present how we are dispersing nano particles and how we are using flow properties to monitor dispersion," he said.

Using supercritical carbon dioxide, the researchers are able to exfoliate nano particles at higher concentrations, leading to further enhancement of mechanical properties than presently possible using just mechanical mixing. "Carbon dioxide is soluble in a lot of polymers. It attaches to the particles so they don't attach to each other, and helps disperse the particles throughout the polymer. It is a benign, natural substance," Baird said.

The rheological properties including the normal stresses (elastic properties) and the stress relaxation response are used to monitor particle dispersion.

The researchers also have discovered that the changed flow behavior is good news - an indication that the material will exhibit improved mechanical properties.

Baird's team observed that nano clay particles well dispersed in polypropylene and polycarbonate plastics tend to promote polymer chain orientation, or alignment, and then retard relaxation or loss of orientation. "The result is they make the polymer chains act like longer or higher molecular weight chains. The material is stronger than one would expect given the size of a polymer chain."

Pointing to a bobbin of fiber, Baird said, "If that contained nano particles and was stretched, it is possible that the fiber could be woven into a vest that would stop a bullet. An ordinary polymer material with well dispersed high levels (8 wt%) of nano particles could have exceptional mechanical properties."

He will present the paper, "Effects of nano clay particles on non-linear rheology of polymer melts (Poly 248)" at 11:20 a.m. Monday, Aug. 29, in the Grand Hyatt Constitution room D-E, as part of the Herman Mark Award program honoring Don Paul.

Learn more about Baird's research here

####

About College of Engineering at Virginia Tech:
The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 5,600 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology.

Founded in 1872 as a land-grant college, Virginia Tech has grown to become among the largest universities in the Commonwealth of Virginia. Today, Virginia Tech's eight colleges are dedicated to putting knowledge to work through teaching, research, and outreach activities and to fulfilling its vision to be among the top research universities in the nation. At its 2,600-acre main campus located in Blacksburg and other campus centers in Northern Virginia, Southwest Virginia, Hampton Roads, Richmond, and Roanoke, Virginia Tech enrolls more than 28,000 full- and part-time undergraduate and graduate students from all 50 states and more than 100 countries in 180 academic degree programs.

For more information, please visit www.vt.edu

Media Contacts:
Susan Trulove
(540) 231-5646
STrulove@vt.edu

Copyright Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project